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Abstract

Options have become extremely popular and the reasons behind that can be summarized in two points; they are attractive tools
both for speculation and hedging. If their price can be determined: therefore their trading can be done with a certain
confidence.The vendor of the option have two mains questions. How much should the buyer of the option pay in other words,
how to access the price at the time t = 0 and the richness available at time T ?becomes the pricing problem. Multi fractals offer a
well-defined set of answers to this question because it has the capability of generating various degree of long term memory in
different powers of return. A model cannot capture all aspects of reality but rather a simple version that focuses on some
particular point of interest. We present a dynamic multi-period spectrum model of variation of the capital market price aimed
at determmmg the growth rate of an asset, using a contlnuous rate of return rt = —e-ya; and the 0pt1mal trading strategy.

INTRODUCTION

Let (Rn, (R")) ; be a measurable space and let f: f(R") — R be a measurable function. Then the multi-fractal
spectrum is defined by

(@) ={eB(RY): fla)} < Aa; =« 1.1

The basic problem is to calculate the function (a)(Sun etal 2001).To do this, we need to know what the function
fCa) is. The multi-fractal formalism of multi-affine functions amounts to compute the spectrum,D(«), define a
set where the fractal exponent is equal to a. ( Xiao 2004) Following

u(BGor) and

equationsDp, (u, x) = lrill(l) sup =

2
1
14—
. (1+Y)2 ( fa(o,l)Aa)
lim sup i h(t) =20 20 :

we require the local asymptotic behavior of the sample path of the process. And what comes to mind is the subject
of the law of iterated logarithm (LIL).To this end, we assume a double stochastic integrals by a direct adaptation
of the case of the Brownian motion and set (Uzoma 2006)
h(t) = 2tloglog=, for t >0. (1.2)
In what follows, we now state;

to obtain the function f(a) = lim sup % in our case,
r—0

| ISSN: 3065-0577 Page | 23

Vol: 12 No: 03

https://keithpub.com/ | ©2024 1JDSS |
Published by Keith Publication




/

ISSN: 3065-0577

International Journal of Data science and Statistics

Research Article
Lemmal.l

For t > Oand h(t) = 2tloglog % the singularity spectrum D(«) defined as the Hausdorff
dimension of the set where the fractal exponent is equal to a (Xiong 2002) is given by

Xt 1+y)? , _
o lim sup — ORI 6 =1,ye[0,1], (1.33)
1
wherey = (1.3b)
fcz(o 1)Aa
Proof

Let d be a predictable process valued in a bounded interval [ao, 1] for some real parameters, 0 <
@0 < a1, andXf = [} [ a,dW,dW,,.

d

, 2X§
Then ay < ltmtﬂo% <a,a.s.
_ +
Nowset @@= w >0
and

5 — (a1+a0).
2
For the first inequality, we have by the law of the iterated logarithm for the Brownian motion.
i 2Xx¢ <51 2X¢ b 2Xx¢
a= 1msu = 1msu 1msu
o) PRt Py

Whered = §-1(a@ — d) is the value in[—1,1]. It then follows from the second inequality that;
d

2X¢
llmsuph()_ -6 =p,

For the proof of the second inequality, we assume without loss of generality that ||d||» < 1.

Let T > 0 and A > 0 be such that2AT < 1. Then from Doob’s maximal inequality for submartingales for all g >
0, we have

P [max 2X:4> ] = P [ max exp (2AX:?) > exp(Af)]

0<t<T o<t<T

< e-18E [ez/lxrd]

= e-(B+1)(1 — 2AT)~ /2. (1.4)
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Bre= (1 +y)*h(6%)
Take 6, ye(0,1) and set all
KeN
and
A= [201+p)]?
Applying

u(B(0,1)) = |{EeR™ X4neB(0, )}|

= f 0® Ig(0,r) X¢dndt
=T(r). we have that for all KeN,
P max 2X7 = (1+7)2h(6") < e” 20 (1 + 771 (~k log 6)~0+V)|

It follows from the Borel-Cantelli lemma that for almost all wef and since
1
Zk>0W )

there exists a natural number K¢v(w) such that for all k > Ko (w),
_max, 2X8(w) < (1 +y)%h(0%).
st<

In particular, for all t € (6%+1, 6k),
XEw) < (L +7)?h(6%) < (1 +7)* 22,
Hence

2
1
(1+)’)2 ( +frx(0,1)Aa)
h(r) =" 20 20 : (1.5)

1.2 The general case
In the real world in general, markets are neither ideal nor complete (Val and Zaka 2004). Therefore, the equation

=22+ H(1.6a)

can be seen as real world behavior of a stock market price.

Consider hedging a market comprising h unit of asset in long position and one unit of the option in short position.
At time T the market value is assumed to be h — (E) + H or hP — W + H, following (1.6a).

After an elapse, At, the value of the market will change by an amount/rate h(AP + D1At) — AW ,in view of the
dividend received on h unit held, where D1 is the market price of risk, following

llm sup —
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Mp(ﬁt) = li_I}&Ek m?;D > 0;7, < .Bylto’s lemma we have

ow ow 19%w 52p?2 ow
h(wPAt + cPAz + D, At) = Ka— +opuP + oo a?P )At +ﬁaPAzl +H
or
[hap + th - (a—w +20uP + ;ip"‘: 2p2)|at = [hop — 52 0P| Az, (1.6b)
Take h = , then the uncertalnty term disappears and the market in this case is temporarily riskless (no signal).
It should therefore grow in value by the riskless rate in force i.e.
ow  ow 192w 5

(huP+hD1 Ia + 5 UP + ooz P DAtiH

= (hP-W)At+H (1.7
Thus,
D, 20— (204 %‘;TW o2p?) = (2P -w)y, (1.8) 50 that
2 (P - DI+ 12 52p2 = yW | (1.9)

2 apz
Under the foIIowmg dynamics

dP:= (t)Pdt + o (S)PedW (t), wherea(t) = In (P”l‘; ) is the rate of stock price changes at time t.
we have the version of the parabollc partial differential equation (4.9) with D1= 0 as;

oW (P, t) ow (P, t) )2 ,0°W(P,t)

_— —_— —_—t

ot P P —gpz— 24

—r(P, t) + H,V(P, t) € (0, 0) x (0,T), (1.10a)
Following equation
(™) = yo(t) =3+ (Ho + H,) +
av
Ho. Yw(7) = ¥o(7) =55 £ (2Ho)we have;
_dwW(Pt) _ oW (P,t) 1 o 50?2 W(P t)
e P T2 ((1+f(6(r,'r)/12 s2r/fha ))) (Se)P + (Ho + Hy)  Ho

(1.10b)
and
_ awpt) 1 % o 82 a*w(p.t)
I ((1+f(5(tﬂ")/12 szr/fm))) (Se)P™ 55— £ 2Ho (1.10c)

1.3 The optimal trading strategy
Let us denote an optimal trading strategy 7z; for which we define
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Hne(t, y, P) = Exes[UW(T))]. (1.11)
Our objective here is to find the optimal value function such that
(t,v,, P) =Sup Hn(t,y,, P). (1.12)
T+€ T
Assume equation (4.9) for D1+ 0 together with the optimal 7, we have
2t P - D)2+ 1T 2 (SmiP? = YW, (1.13)

Putz = %; W (P) = zZPH(Z). Since Wis dependent on y, differentiating and substituting into
equation (1.13), gives
yzPH = @[ﬁ(ﬁ +1)zPH + ﬁzﬁ“g—z +2(B + 1)zﬁ+12—z+ zP*2m; aZ—H] + (E -

t gz2 z
D) (=3) (877 +1H + 2P+ 2). (114
Now cancelling by z# and collecting like terms give
o*(S)m; ,0*°H OH / D,
0= > Z 622+Ez(a (B+1)—y—;z)
o2 Dy
+H(ZBB+ 1D -y, (B+1) +p22). (1.15)

o2(Sy) D1/
Set —==p =rand let 55 = —1to have

2
2r 2D,

B = 760 %= ey SubstitSuteintoequation (4.14) to obtain
zniH,, + (2 —2z)H, = f(H — H,). (1.16)
Solving for optimal trading strategy, we have
* _B(H_Hz) (Z_Z)Hz
my = +
zH,, zH,,

2r
o2(Sy) (H = H,) N (z—2)H,

a?(5¢) € - Z)+(Z—Z)Hz. (117)
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Tt
5 {((Hf( 8(tT)A2 S2I'[FAa )))(St)\ﬁ

2

o2(5p) (H — Hy) N (z — 2)H,

Zsz Zsz
The model has some successes in explaining excess volatility of stock returns compared to fundamentals and
negative Skewness of equity returns as well as generating multi-fractal spectrum. By equation (4.6) there is no
market signal as it tends to zero, meaning that the market is likely to crash at such point, signifying insolvency in
asset returns.

f(@) = lim (%42), (1.18)

k—oo \ Insk

Denoting by (a, At) the number of intervals [¢t, t + At] required to cover 7(a) we can write equation (1.27b)~
Ste=S(t, T, r)=Ke T

N(a, At)~(At)~f(®, (4.19) The market prices correspond
to the values of a between amin and (fmax)
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