ISSN: 3065-0577

International Journal of Data science and Statistics

Research Article

COMPARING MULTI-RIDGE AND INVERSE-RIDGE REGRESSIONS
FOR DATA WITH AND WITHOUT MULTICOLLINEARITY USING
VARIOUS SHRINKAGE FACTORS

Nnena Ngozi Okoro and Samuel Chukwudi Nwachukwu
Mathematics/Statistics Department, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt,
Rivers State, Nigeria.

DOI: 10.5281/zenodo.14930399

Abstract

The study presented Mult-, and Inverse-ridge regressions for data with or without multicollinearity for certain shrinkage factors.
The study considered data of GDP of Nigeria as response, while exchange, unemployment, inflation and foreign direct investment
were used as the predictors. The data were tested for outlier using Grubb’s test and the VIF, condition number, correlation and
t-values were used to assess how the OLS and Ridge regressions were related with the proposed mult-and inverse-ridge
regressions. The study revealed that whether or not, there is outlier or multicollinearity in a data set, the mult or inverse-ridge
gives the same estimate of model parameters with the respective shrinkage factors of 1.000006 and 0.999999. These methods,
overcame the barrier of testing for outlier or multicollinearity in a data set, it is advised that instead of testing, use any of the
methods, Ridge, Sub-Ridge, Multi-Ridge and Inverse-Ridge methods with their respective shrinkage penalty. The OLS was not
condemned, rather, it was used as the basis for judging these proposed methods.
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Introduction

Regression analysis is like other inferential methodologies with the goal of drawing a random sample from a
population and use it to estimate the properties of that population. In regression analysis, the coefficients in the
regression equation are estimates of the actual population parameters, it is expected that these coefficient
estimates be the best possible estimates. Supposing one requests an estimate for the cost of a service that is being
considered. If the linear regression model satisfies the OLS assumptions, the procedure generates unbiased
coefficient estimates that tend to be relatively close to the true population values (minimum variance). In fact, the
Gauss

Markov theorem states that OLS produces estimates that are better than estimates from all other linear model
estimation methods when the assumptions hold true. Ordinary Least Squares linear regression (OLS) is one of
the most commonly and oldest used approaches in multiple regression. The estimator relates the dependent
variable to a set of explanatory variables. In particular, if a model is constructed from variables with mean zero,
then the estimator takes the covariance between the explanatory and dependent variables XX, and scales it by the
inverse of the variancecovariance matrix of the explanatory variables (X'X)-1. According to Onu, et al. (2021)
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and Shalabh (2012), a simple linear regression is an approach in statistics that is employed in the modeling of a
linear surfaces. Regression analysis can be linear, nonlinear, second-order (quadratic or polynomial) regression.
The model that is linear or nonlinear have been a major problem to decide as many will say that if the highest
power of the unknown is one, it is linear and if the highest power is two, the model is quadratic and if more than
two it is polynomial. Multiple linear regression is very sensitive to predictors that are in a configuration of near
collinearity. When this is the case, the model parameters become unstable (large variances) and cannot be
interpreted. From a mathematical standpoint, near-collinearity makes the X'X matrix ill-conditioned (with X the
data matrix), that is, the value of its determinant is nearly zero, thus, attempts to calculate the inverse of the matrix
result in numerical snags with uncertain final values. Exact collinearity occurs when at least one of the predictors
is a linear combination of other predictors. Therefore, X is not a full rank matrix, the determinant of X is exactly
zero, and inverting X'X is not simply difficult, it does not exist. When multicollinearity occurs, the least squares
estimates remain unbiased and efficient. The problem is that the estimated standard error of the coefficient S;
tends to be inflated. This standard error has a tendency to be larger than it would be in the absence of
multicollinearity because the estimates are very sensitive to any changes in the sample observations or in the
model specification. In other words, including or excluding a particular variable or certain observations may
greatly change the estimated partial coefficient. If bi is larger than it should be, then the tvalue for testing the
significance of S: is smaller than it should be. Thus, it becomes more likely to conclude that a variableX: is not
important in a relationship when, in fact, it is important. The Multiplicative ridge and Inverse ridge regressions,
known as Mult-ridge and Inverse ridge were proposed as regression methods used in estimating parameters. This
was as a result of the fact that Ordinary Least Square (OLS) was only better when the data is free from
multicollinearity and outlier. Also, the data must be normally distributed. Ridge regression was introduced to
handle such problem. This proposed methods, can estimate parameters with data with or without multicollinearity
and outlier. The estimates give same results for some pronounced shrinkage factors.

Regression analysis can be explained as a function between interested response variable and explanatory variables
thought to be related on response (Ari & Onder, 2013). Least square method (LS) is a common method to estimate
parameters in the regression model (Uckardes et al., 2012). Besides, the LS method is an unbiased method that is
not only estimate parameter but also minimizing the error of the model. However, the LS method needs some
assumptions which should be provided for the model reliable. If assumptions aren’t provided, the reliability of
the model will decrease. Therefore, it will cause misinterpretations. To guarantee the usability of this method, the
assumptions must be valid such as that the errors are independent and normally distributed, and independent
among explanatory variables.

Ridge regression is a technique for analyzing multiple regression data that suffer from multicollinearity. When
multi-collinearity occurs, least squares estimates are unbiased, but their variances are large so they may be far
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from the true value. By adding a degree of bias to the regression estimates, ridge regression reduces the standard
errors. It is hoped that the net effect will be to give estimates that are more reliable. Another biased regression
technique, known as principal components regression, but Ridge regression is the more popular of the two
methods. Many procedures have been suggested in an attempt to overcome the effects of multicollinearity in
regression analysis. Hoerl and Kennard (1970) proposed a class of biased estimator called ridge regression
estimators as an alternative to the OLS estimator in the presence of collinearity.

2. Materials and Methods

Testing for Outliers in a Data set

Grubb’s test was used to detect outlier since it detects one outlier at a time. It involves the following steps

Q) Order the data point from smallest to largest.

(i) Find the mean and standard deviation of the data set.

(iii)  Calculate the G-test statistic using one of the following equations.

In test for outliers in this study, Grubbs’ test was employed and it is given as

_ Max |vi-7|
G_i=1 ..... N (1)

Yiis the sample data from a given population, here it represents any of GDP, FDI, Exchange rate, Inflation rate
and Unemployment rate and Y is the sample mean, while s is the sample standard deviation.
The Grubbs test can also be given as a one-sided test as

G = ?_Zmin (2) or

G = —Ymax_? (3)

s

The test is based on the assumption of normality. It detects one outlier at a time, the outlier detected is removed
from the data set and the test is repeated until no more outlier is detected.

P =20 (4)

n
Where, Y is the arithmetic mean Y is individual

data value n is the total number of data

\/zgyi—y)z
S=" a1 is the standard deviation 5)
Geometric mean is "Wy1xy2xysx. x. x. yn (6) Harmonic mean is
N
H,M = (7)
Gty )
1 2 3 N
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th
Median is given as the size of @ item (8)

Testing for the Presence of Multi-collinearity in the Data Set Testing for multi-collinearity in
the data sets, we employ the following methods.

Variance Inflation Factor (VIF)

Variance Inflation Factor according to Ayuya, (2021) and Deanna, (2018), the VIF is given as

VIF = — 9)

Where Coefficient of Determination (R?) is the R-squared value obtained from the regression of ; on the other
independent variables. It is seen, if the R-squared in the denominator gets closer and closer to one, the VIF will
get larger and larger. The rule of thumb cut-off value for VIF is 10. Solving backwards, this translates into an R-
squared value of 0.90. Hence, whenever the R-squared value between one independent variable and the rest is
greater than or equal to 0.90, you will have to face multi-collinearity.

According to Thompson, et al. (2017), coefficient of determination is given as
2 _SSR _ E(@i-¥)?*_, SSE _ .  I(yi-3)?

SST  Z(yi—¥)? SST I(yi-y)?
Condition Number and Condition Index
In order to find the eigen values of a matrix, given a k x k matrix A, a k x k identity matrix / and an eigen value
3, the following steps are to be followed:

a) Be sure that the given matrix A is a square matrix k x k.
b) Estimate the matrix. That is |4 — M|

C) Find the determinant of the matrix.

d) From the equation obtained|A — 31| = 0

e) Calculate all the possible values of the equation.

The square root of the ratio between the maximum and each eigenvalue (A1, A2, ..., Ak) is referred to as the
condition index:

ke = M2 (s = 12,.., k) (10)
The largest condition index is called the condition number and is the most widely used estimator to measure the

strength of multi-collinearity called condition number by (Vinod & Uallh, 1981) is defined as k = mex

A-min

(11) Where Amax and Amin are the largest and smallest eigenvalues of the matrix X'X respectively. If Amin

is zero, then is K is infinite, means perfect multi-collinearity among the independent variables and if Amax is equal
to Amin, then K is one, means the independent variables are said to be orthogonal. If k is between 30 to 100, it
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indicates a moderate to strong multi-collinearity. Any k value greater than 100 suggests severe multi-collinearity
and larger value indicates serious multi-collinearity.

Correlation
This study is interested in the correlation that exist between two predictor variables as seen
. n¥xixj—(Xx;) (X x)) (12)

%% = g x - ) L a2 ()%)

Where x ;and ; represent the ithand jt* predictor variables, the higher value of r indicates higher presence of
multicollinearity, while the lower value of r indicates reduced presence of multucollinearity. The formula of the
correlation is as seen in Onu, et al. (2021).

Determinant of a Matrix

Key Points of determinant

a) Let A be an m*n matrix and k an integer with 0<k<m, and k<n. A kxk minor of A is the determinant of
a kxk matrix obtained from A by deleting m-k rows and n-k columns.

b) The first minor of a matrix Mij is formed by removing the ith row and jth column of the matrix, and
retrieving the determinant of the smaller matrix.

c) The cofactor of an element aij of a matrix A, written as Cij is defined as (—1)*+IMij.

Key Terms

a) Cofactor: The signed minor of an entry of a matrix.

b) Minor: The determinant of some smaller square matrix, cut down from matrix A by removing one or

more of its rows or columns (Boundless, 2018).

The Parameter Estimates of Ordinary Least Square

This study will employ a five parameter probabilistic model given as

Y=po+ f1X1+ f2X2+ [3X3+ [aXa+ € (13)

Where Y is the Gross Domestic Product (GDP) of Nigeria used as the response variable, while X1is the Exchange
rate, X2is the Unemployment rate, X3 represents the Inflation rate, and X4 is the Foreign Direct Investment (FDI)
in Nigeria are the predictor variables, Bo, f1, 52, B3 and (4 are the unknown model parameters while €is the
stochastic disturbance or simply the error. The model in equation (13) is a multiple linear regression and it can
be written in matrix form as:

Y=XB+e¢ (14)
O y1D 01 X11 X12 . . . X1pl:| DDol] Dl:lll:l
O O O O O O O O
Dyzlj 01 Xo1 X22 . . . szD DD1D Dl:lz[l
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o.0 0. . . . . .0 o.0 0.0

Y=0 0 X =0 00=000=00

o.0 0. . . . . . .0 o.0 0.0

oo . oo oo . . . . . .00 0O0.00 oo.oao
O0y.00 , 0O01 XmXn2 . . Xpp OO, 000,00, 0og,0o

where X isan N X P matrix, Y isan N x 1 vectors of observed parameters and £ is a

P x 1 vectors of unknown parameters and £~ (0, §2) is the error term. From the model in (13) we obtain the
matrix X, the transpose of this matrix is obtained given as X'. The matrix x is multiplied by its transpose to obtain
X'X known as the information matrix. The inverse of X'X is obtained by using the formula

rvy—1 _ Adjoint(X'X)
XX~ = det (X'X)

Where det (X'X) is the determinant of X'X.

The transpose of X is multiplied by the response variable y to obtain X'Y. In order to obtain the parameters of the
model in (13), the Ordinary Least Square formula is applied and given as seen in (Iwundu & Onu, 2017, Onu, et
al. 2021 and Kutner, et al.2005).

p=XX)TXY (16)

The Parameter Estimates of Ridge Regression for varying Values of Shrinkage Penalty The Ridge
Regression is like the Ordinary Least Square method; the only difference is the addition of the quantity Kl to the
information matrix to remove the effect of multi-collinearity in the analysis. K is a constant that takes on values
not greater than 0.2 and the smaller the value of K, the better the Ridge parameters estimated and the higher the
values of K above 0.2, the more the information matrix becomes singular matrix (Nduka & ljomah, 2012).

It is given by the formula

f=XX+KDXY 17)

Where 1 is an identity matrix.

The proposed Estimates of Multiplication and Inverse based Ridge Regressions for varying Shrinkage
Penalty Values.

The Parameter Estimates of Multiplicative based Ridge Regression for varying Shrinkage Penalty Values
Another method to be tested in this research is the multiplicative ridge regression, it is given as
f=XXxKDX'Y (18)

The Parameter Estimates of Inverse based Ridge Regression for varying Shrinkage Penalty Values

Also, the inverse based ridge is given as

B =X+ EKHTXY (19)

(15)
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B=XX— (KXY (20)
B=XXxKHDHXY (21)
where, Equation (19), (20) and (21) are the Inverse Ridge regression in term of Additive, Subtractive and
Multiplicative respectively
Test of Significance of Combined Regression ANOVA for k Predictor Variables Multiple Linear
Regression
We present the F-test provided by the method of analysis of variance (ANOVA). For the general case of k
independent variables and the test is base on the F-ratio given as
SSR/k MSR

"~ SSE/(n—k—1) MSE
The overal variance in dependent (YY) can be splitted into
Li—y)? =E@i— y)? + E(yi — Yi)?
SST = SSR + SSE where
SST is the total variation in dependent ().
SSR is the regression variation in dependent (Y).
SSE is the error (residual) variation.

They are summarized in the table below.

Table 1: Analysis of Variance (based onk Predictor Variables)

Source Degree of Freedom Sum of Squares  Mean Square F-Ratio P-Value

Regression k SSR MSR=SSR/kFos=MSR/MSE

Error n-k-1 SSE MSE=SSE/(n-k-1)  ---

Total n-1 SST

The F-ratio above described above is the test statistics for the null hypothesis

Ho: bi=..=bk=0 (Y is not linearly associated with and of the independent variables) Hi: Not all b; = 0

(At least one of the independent variables is associated with dependent variable.)
From F-distribution with viand vz degree of freedom with selected significance level. A null hypothesis is

accepted if the test statistics is less than the table value. Otherwise, null hypothesis is rejected. That is Fobs O

Foxn-k-1
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P-value: Area in the F-distribution to the right of Fops,
Table 2: Results of Varying Shrinkage Penalty Values on the Selected Economic Variables Data

K OLS Ridge Sub-Ridge Multi-Ridge Inverse-Ridge
0.000000 13.132 13.132 13.1323 - 0.0000 0.0000
3 3 0.4061 0.0000 0.0000
-0.4061 -0.4061 -0.0372 0.0000 0.0000
-0.0372 -0.0372 -2.6536 0.0000 0.0000
-2.6536 -2.6536 0.0327 0.0000 0.0000
0.0327 0.0327
0.000005 tx tx tx tx
13.132 5.61 13.1323 -5.61 2626500 1122435 0.000006566 0.0000028
3 - 04061 -073 O -1468354 - -
-0.4061 0.73 -0.0372 -0.84 -812000 -16666667 0.000000020 0.00000003
-0.0372 - -2.6536 -3.60 -74000 - 3 7
-2.6536 0.84 0.0327 2.55 - 7.1911056 -0.000000019 -
0.0327 - 5307000 5078125 -0.000001327 0.00000004
3.60 65000 -0.000000016 3-0.00018
2.55 0.000125
0.000007 13.132 13.1324 - 1876000 801709.4  9.0926 3.89-2.35
3 - 0.4062 -0.73  -58000 04882.5 1.2986 0.78 -2.93
-0.4061 0.73 -0.0372 -0.84 -5300 --119369.4 -0.0346 1.54
-0.0372 - -2.6536 -3.60 379100 513685.6 2.1647
-2.6536 0.84 0.00327 2.56 4700 367187.5 0.0197
0.0327 -
3.60
2.56
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0.00005 5.61
13.131 _
9 073 13.1328 -5.61 262650 112243.6  0.0006566 0.00028
.0.4061 . 04062 -0.73 -8120  -14683.5  -0.0000203  -0.000038
00372 ggg 00372 -084 740  -16666.7  -0.000019  --0.000043
-2.6535 -2.6537 -3.60 53070 -71910.6 0.0001327 -0.00018
0.0327 2.55 650 50781.3 0.0000016 0.000125
0.0327 -
3.60
2.55
0.99999 7.8091 3.34  44.3446 18.95 13.1325 5.61 13.1322 5.61
0.3414 0.62 -4.9423 -8.99 -0.4061 -0.73 -0.4061 -0.73
-0.0566 0.0870 196 -0.0372 -0.84 -0.0372 -0.84
1.27
-1.3887 -13.83 -2.6536 -3.60 -2.6535 -3.60
- 10.0989
0.0213 7.88 0.0327 2.55 0.0327 2.55
1.88
0.1008
1.66
0.999999 7.8091 3.34  44.3455 18.95 13.1324 5.61 13.1323 5.61
0.3414 0.62 -4.9425 1.70 -0.4061 -0.73 -0.4061 -0.73
-0.0566 0.0870 1.96 -0.0372 -0.84 -0.0372 -0.84
-1.3887 1.27 -13.68 -2.6536 -3.60 -2.6536 -3.60
- 10.0991
0.0213 7.88 0.0327 2.55 0.0327 2.55
1.88
0.1008
1.66
1.000006 7.8091 3.34 44.3463 18.95 13.1323 561 13.1324 5.6
0.3414 0.62 -4.9426 -8.94 -0.4061 -0.73 -0.4061 -0.73
-0.0566 0.0870 2.00 -0.0372 -0.84 -0.0372 -0.84
1.27
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-1.3887 -13.68 -2.6536 -3.60 -2.6536 -360
- 10.0993

0.0213 7.88 -0.00327 2.56 0.0327 2.55
1.88

0.1008

1.66

Table 3: Comparison of known (Additive) and Multi-Ridge Results of VVarying Shrinkage Penalty Values on the
Selected Economic Variables Data.

K OLS Ridge K Multi-Ridge
0.000000 13.132 13.132 0.999999 13.13255.61
3 3
-0.4061 -0.73
-0.4061 -0.4061 -0.0372  -0.84
-0.0372 -0.0372 -2.6536  -3.60
-2.6536 -2.6536 0.0327 2.55
0.0327 0.0327
0.000005 tx 1.000006 tx
13.132 561 13.1323 5.61
3 - -0.4061  -0.73
-0.4061 0.73 -0.0372  -0.84
-0.0372 - -2.6536  -3.60
-2.6536 0.84 -0.00327 2.56
0.0327 -
3.60
2.55
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0.000007 13.132
3
-0.4061
-0.0372
-2.6536
0.0327

0.00005 13.131

-0.4061
-0.0372
-2.6535
0.0327

0.00008 13.131

-0.4060
-0.0372
-2.6534
0.0327

0.73

0.84

3.60
2.56

5.61

0.73

0.83

3.60

2.55

0.73

0.84

3.60
2.56

1.000009

1.00001

1.00002

13.1322
0.4061
-0.0372
-2.6535
0.0327

13.1322
0.4061
-0.0372
-2.6535
0.0327

13.1321
0.4061
-0.0372
-2.6535
0.0327

-561
-0.73
-0.84
-3.60
2.56

--0.73
-0.84
-3.60
2.56

-0.73
-0.84
-3.60
2.56
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0.0005 13.127 5.61 1.00003 13.1319
8 - -0.4061  -0.73
-0.4055 0.73 -0.0372  -0.84
-0.0372 - -2.6535  -3.60
-2.6525 0.83 0.0327 2.56
0.0327 -
3.59
2.55
0.0009 13.124 1.00008 13.1313 -
2 - 0.4061 -0.73
-0.4050 0.73 -0.0372  -0.84
-0.0373 - -2.6534  -3.60
-2.6516 0.84 0.0327 2.56
0.0327 -
3.59
2.55
0.005 1.00009 13.1312 -
13.087 5.59 0.4061 -0.73
0 } -0.0372  -0.84
-0.3997 0.72 -2.6533  -3.60
-0.0374 - 0.0327 2.56
-2.6428 0.84
0.0326 -
3.58

2.55

Discussion of Results

The results in table 2 revealed that for the shrinkage factor k=0.000000, the OLS, Ridge and Subridge regressions
have equal coefficients, while the proposed Mult-Ridge and Inverse-Ridge have coefficients of zeros all through.
For the shrinkage factor k=0.000005, the Ridge and Sub-Ridge regressions maintained the same coefficients as
with the shrinkage of k=0.000000, while, the MultRidge and Inverse-Ridge regressions parameters increased out
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of bound, likewise its t-values. As the shrinkage factor k increased to k=0.000007, the Ridge and Sub-Ridge
regressions parameters differed in the gradients of exchange rate from -0.4061 to -0.4062, also, they differed in
the gradients of the FDI, while, the Ridge regression was equal to the OLS for the shrinkage k=0.000007. Hence,
k=0.000007 was proposed as the shrinkage penalty for Ridge regression. That is to say, whether the data has
multicollinearity or not, the Ridge regression will have equal estimation of parameters with the OLS when the
shrinkage penalty k of the Ridge regression is 0.000007. This serves as a big advantage to researchers, especially
those that deal on big data, because, needless of testing for multicollinearity, as it could be time consuming. As
the k increases further, the Ridge and the Sub-Ridge estimates continue to differ, even more visibly away from
the estimates of the OLS, while the Mult-Ridge and Inverse-Ridge estimates become closer to each other and
tending towards the OLS estimates. As the k increased to k=0.999999, the Inverse-Ridge estimates became equal
to the OLS, and the value k=0.999999 was proposed as the shrinkage penalty for Inverse-Ridge. As k increased
to 1.000006, the Mult-Ridge estimates became equal to the OLS, as such, k=1.000006 was proposed as the
shrinkage penalty for Mult-Ridge regression. The implications of these findings, was to provide diverse method
of solving regression problem instead of using just OLS when there is no multicollinearity in the data or using
Ridge when there is multicollinearity in the data set(s). Also, the methods, overcomes the barrier of testing for
multicollinearity in a data, instead, use any of the methods, Ridge, Sub-Ridge, Multi-Ridge and Inverse-Ridge
methods with their respective shrinkage penalty. The OLS was not condemned, rather, it was used as the basis
for judging these methods.

Conclusion

The study concludes that multiplicative (mult-ridge) and Inverse-ridge regression methods should be applied with
1.000006 and 0.999999 shrinkage penalty respectively in order to overcome the extra work of testing the data for
outlier and multicollinearity. With the proposed shrinkage value, the proposed methods yield same results with
the OLS, whether with or without outlier or multicollinearity.

Contribution to knowledge

The study was able to show that, needless of testing for outlier or multicollinearity in a data set, when trying to
use regression approach in estimating parameters of a model. Instead, used either of mult-ridge with 1.000006
shrinkage penalty or inverse-ridge with 0.999999 shrinkage penalty.
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