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Abstract 
The study presented Mult-, and Inverse-ridge regressions for data with or without multicollinearity for certain shrinkage factors. 
The study considered data of GDP of Nigeria as response, while exchange, unemployment, inflation and foreign direct investment 
were used as the predictors. The data were tested for outlier using Grubb’s test and the VIF, condition number, correlation and 
t-values were used to assess how the OLS and Ridge regressions were related with the proposed mult-and inverse-ridge 
regressions. The study revealed that whether or not, there is outlier or multicollinearity in a data set, the mult or inverse-ridge 
gives the same estimate of model parameters with the respective shrinkage factors of 1.000006 and 0.999999. These methods, 
overcame the barrier of testing for outlier or multicollinearity in a data set, it is advised that instead of testing, use any of the 
methods, Ridge, Sub-Ridge, Multi-Ridge and Inverse-Ridge methods with their respective shrinkage penalty. The OLS was not 
condemned, rather, it was used as the basis for judging these proposed methods. 
Keywords: Multi-ridge, Inverse-ridge, Ridge regressions, OLS, t-values. 
 

Introduction  

Regression analysis is like other inferential methodologies with the goal of drawing a random sample from a 

population and use it to estimate the properties of that population. In regression analysis, the coefficients in the 

regression equation are estimates of the actual population parameters, it is expected that these coefficient 

estimates be the best possible estimates. Supposing one requests an estimate for the cost of a service that is being 

considered. If the linear regression model satisfies the OLS assumptions, the procedure generates unbiased 

coefficient estimates that tend to be relatively close to the true population values (minimum variance). In fact, the 

Gauss 

Markov theorem states that OLS produces estimates that are better than estimates from all other linear model 

estimation methods when the assumptions hold true. Ordinary Least Squares linear regression (OLS) is one of 

the most commonly and oldest used approaches in multiple regression. The estimator relates the dependent 

variable to a set of explanatory variables. In particular, if a model is constructed from variables with mean zero, 

then the estimator takes the covariance between the explanatory and dependent variables 𝑋′𝑋, and scales it by the 

inverse of the variancecovariance matrix of the explanatory variables (𝑋′𝑋)−1. According to Onu, et al. (2021) 
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and Shalabh (2012), a simple linear regression is an approach in statistics that is employed in the modeling of a 

linear surfaces. Regression analysis can be linear, nonlinear, second-order (quadratic or polynomial) regression. 

The model that is linear or nonlinear have been a major problem to decide as many will say that if the highest 

power of the unknown is one, it is linear and if the highest power is two, the model is quadratic and if more than 

two it is polynomial. Multiple linear regression is very sensitive to predictors that are in a configuration of near 

collinearity. When this is the case, the model parameters become unstable (large variances) and cannot be 

interpreted. From a mathematical standpoint, near-collinearity makes the 𝑋′𝑋 matrix ill-conditioned (with X the 

data matrix), that is, the value of its determinant is nearly zero, thus, attempts to calculate the inverse of the matrix 

result in numerical snags with uncertain final values. Exact collinearity occurs when at least one of the predictors 

is a linear combination of other predictors. Therefore, X is not a full rank matrix, the determinant of X is exactly 

zero, and inverting 𝑋′𝑋 is not simply difficult, it does not exist. When multicollinearity occurs, the least squares 

estimates remain unbiased and efficient. The problem is that the estimated standard error of the coefficient 𝛽𝑖 

tends to be inflated. This standard error has a tendency to be larger than it would be in the absence of 

multicollinearity because the estimates are very sensitive to any changes in the sample observations or in the 

model specification. In other words, including or excluding a particular variable or certain observations may 

greatly change the estimated partial coefficient. If bi is larger than it should be, then the tvalue for testing the 

significance of 𝛽𝑖 is smaller than it should be. Thus, it becomes more likely to conclude that a variable𝑋𝑖 is not 

important in a relationship when, in fact, it is important. The Multiplicative ridge and Inverse ridge regressions, 

known as Mult-ridge and Inverse ridge were proposed as regression methods used in estimating parameters. This 

was as a result of the fact that Ordinary Least Square (OLS) was only better when the data is free from 

multicollinearity and outlier. Also, the data must be normally distributed. Ridge regression was introduced to 

handle such problem. This proposed methods, can estimate parameters with data with or without multicollinearity 

and outlier. The estimates give same results for some pronounced shrinkage factors.  

Regression analysis can be explained as a function between interested response variable and explanatory variables 

thought to be related on response (Ari & Onder, 2013). Least square method (LS) is a common method to estimate 

parameters in the regression model (Uckardes et al., 2012). Besides, the LS method is an unbiased method that is 

not only estimate parameter but also minimizing the error of the model. However, the LS method needs some 

assumptions which should be provided for the model reliable. If assumptions aren’t provided, the reliability of 

the model will decrease. Therefore, it will cause misinterpretations. To guarantee the usability of this method, the 

assumptions must be valid such as that the errors are independent and normally distributed, and independent 

among explanatory variables.  

Ridge regression is a technique for analyzing multiple regression data that suffer from multicollinearity. When 

multi-collinearity occurs, least squares estimates are unbiased, but their variances are large so they may be far 
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from the true value. By adding a degree of bias to the regression estimates, ridge regression reduces the standard 

errors. It is hoped that the net effect will be to give estimates that are more reliable. Another biased regression 

technique, known as principal components regression, but Ridge regression is the more popular of the two 

methods. Many procedures have been suggested in an attempt to overcome the effects of multicollinearity in 

regression analysis. Hoerl and Kennard (1970) proposed a class of biased estimator called ridge regression 

estimators as an alternative to the OLS estimator in the presence of collinearity.  

2. Materials and Methods  

Testing for Outliers in a Data set  

Grubb’s test was used to detect outlier since it detects one outlier at a time. It involves the following steps  

(i) Order the data point from smallest to largest.   

(ii) Find the mean and standard deviation of the data set.  

(iii) Calculate the G-test statistic using one of the following equations.  

In test for outliers in this study, Grubbs’ test was employed and it is given as  

                    (1)  

𝑌𝑖is the sample data from a given population, here it represents any of GDP, FDI, Exchange rate, Inflation rate 

and Unemployment rate and  𝑌  is the sample mean, while   is the sample standard deviation.  

The Grubbs test can also be given as a one-sided test as  

                      (2)   or  

                    (3)  

The test is based on the assumption of normality. It detects one outlier at a time, the outlier detected is removed 

from the data set and the test is repeated until no more outlier is detected.  

                                                                                                                            (4)  

Where, 𝑌  is the arithmetic mean 𝑌𝑖 is individual 

data value n is the total number of data  

S=     is the standard deviation                                                                       (5)  

 
Geometric mean is 𝑁√𝑦1𝑥𝑦2𝑥𝑦3𝑥. 𝑥. 𝑥. 𝑦𝑁                                                                  (6) Harmonic mean is  

                                                             (7)  

1 2 3   

√ 
Ʃ ( 𝑌 𝑖 − 𝑌  ) 2 

𝑛 − 1  
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Median is given as the size of                                                                (8)  

Testing for the Presence of Multi-collinearity in the Data Set Testing for multi-collinearity in 

the data sets, we employ the following methods.  

Variance Inflation Factor (VIF)  

Variance Inflation Factor according to Ayuya, (2021) and Deanna, (2018), the VIF is given as  

                      (9)  

Where Coefficient of Determination (𝑅2) is the R-squared value obtained from the regression of  𝑖 on the other 

independent variables. It is seen, if the R-squared in the denominator gets closer and closer to one, the VIF will 

get larger and larger. The rule of thumb cut-off value for VIF is 10. Solving backwards, this translates into an R-

squared value of 0.90. Hence, whenever the R-squared value between one independent variable and the rest is 

greater than or equal to 0.90, you will have to face multi-collinearity.  

According to Thompson, et al. (2017), coefficient of determination is given as  

  

Condition Number and Condition Index  

In order to find the eigen values of a matrix, given a k x k matrix A, a k x k identity matrix  and an eigen value 

, the following steps are to be followed:  

a) Be sure that the given matrix A is a square matrix k x k.  

b) Estimate the matrix. That is |𝐴 − ℷ𝐼|  

c) Find the determinant of the matrix.  

d) From the equation obtained|𝐴 − ℷ𝐼| = 0  

e) Calculate all the possible values of the equation.  

The square root of the ratio between the maximum and each eigenvalue (λ1, λ2, …, λk) is referred to as the 

condition index:   

                          (10)  

The largest condition index is called the condition number and is the most widely used estimator to measure the 

strength of multi-collinearity called condition number by (Vinod & Uallh, 1981) is defined as                                                                                              

 (11) Where λ𝑚𝑎𝑥 and λ𝑚𝑖𝑛  are the largest and smallest eigenvalues of the matrix 𝑋′𝑋 respectively. If λ𝑚𝑖𝑛 

is zero, then is k is infinite, means perfect multi-collinearity among the independent variables and if λ𝑚𝑎𝑥 is equal 

to λ𝑚𝑖𝑛, then k is one, means the independent variables are said to be orthogonal. If k is between 30 to 100, it 
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indicates a moderate to strong multi-collinearity. Any k value greater than 100 suggests severe multi-collinearity 

and larger value indicates serious multi-collinearity.  

Correlation  

This study is interested in the correlation that exist between two predictor variables as seen   

               (12)    

Where   and  𝑗 represent the 𝑖𝑡ℎand 𝑗𝑡ℎ predictor variables, the higher value of   indicates higher presence of 

multicollinearity, while the lower value of  indicates reduced presence of multucollinearity.  The formula of the 

correlation is as seen in Onu, et al. (2021).    

Determinant of a Matrix  

Key Points of determinant  

a) Let A be an m×n matrix and k an integer with 0<k≤m, and k≤n.  A k×k minor of A is the determinant of 

a k×k matrix obtained from A by deleting m-k rows and n-k columns.  

b) The first minor of a matrix Mij is formed by removing the ith row and jth column of the matrix, and 

retrieving the determinant of the smaller matrix.  

c) The cofactor of an element aij of a matrix A, written as Cij is defined as (−1)+jMij.  

Key Terms   

a) Cofactor: The signed minor of an entry of a matrix.  

b) Minor: The determinant of some smaller square matrix, cut down from matrix A by removing one or 

more of its rows or columns (Boundless, 2018).  

The Parameter Estimates of Ordinary Least Square  

This study will employ a five parameter probabilistic model given as  

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + ԑ             (13)  

Where  is the Gross Domestic Product (GDP) of Nigeria used as the response variable, while 𝑋1is the Exchange 

rate, 𝑋2is the Unemployment rate, 𝑋3 represents the Inflation rate, and 𝑋4 is the Foreign Direct Investment (FDI) 

in Nigeria are the predictor variables, 𝛽0, 𝛽1, 𝛽2, 𝛽3 𝑎𝑛𝑑 𝛽4 are the unknown model parameters while  is the 

stochastic disturbance or simply the error. The model in equation (13) is a multiple linear regression and it can 

be written in matrix form as:  

𝑌 = 𝑋𝛽 + ԑ                      (14)  

 y1     1 x11 x12 . . . x1p  0  1  

        

y2   1 x21 x22 . . . x2p  1  2  
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 .   . . . . . . .   .   .  

Y =   X =   =   =   

 .   . . . . . . .   .   .  

 .     . . . . . . .   .   .   

 yn  i,i    1 xn1 xn2 . . . xpp ,i p ,i p   

where  is an 𝑁 × 𝑃 matrix,  is an 𝑁 × 1 vectors of observed parameters and 𝛽 is a   

𝑃 × 1 vectors of unknown parameters and ԑ~(0, 𝛿2) is the error term. From the model in (13) we obtain the 

matrix , the transpose of this matrix is obtained given as 𝑋′. The matrix  is multiplied by its transpose to obtain 

𝑋′𝑋 known as the information matrix. The inverse of 𝑋′𝑋 is obtained by using the formula  

                  (15)  

Where det (𝑋′𝑋) is the determinant of 𝑋′𝑋.  

The transpose of  is multiplied by the response variable  to obtain 𝑋′𝑌. In order to obtain the parameters of the 

model in (13), the Ordinary Least Square formula is applied and given as seen in (Iwundu & Onu, 2017, Onu, et 

al. 2021 and Kutner, et al.2005).  

                    (16)  

The Parameter Estimates of Ridge Regression for varying Values of Shrinkage Penalty The Ridge 

Regression is like the Ordinary Least Square method; the only difference is the addition of the quantity KI to the 

information matrix to remove the effect of multi-collinearity in the analysis. K is a constant that takes on values 

not greater than 0.2 and the smaller the value of K, the better the Ridge parameters estimated and the higher the 

values of K above 0.2, the more the information matrix becomes singular matrix (Nduka & Ijomah, 2012).  

It is given by the formula  

                  (17)  

Where I is an identity matrix.  

The proposed Estimates of Multiplication and Inverse based Ridge Regressions for varying Shrinkage 

Penalty Values.  

The Parameter Estimates of Multiplicative based Ridge Regression for varying Shrinkage Penalty Values  

Another method to be tested in this research is the multiplicative ridge regression, it is given as  

                  (18)  

The Parameter Estimates of Inverse based Ridge Regression for varying Shrinkage Penalty Values  

Also, the inverse based ridge is given as  

                 (19)  
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                 (20) 

                 (21)  

where, Equation (19), (20) and (21) are the Inverse Ridge regression in term of Additive, Subtractive and 

Multiplicative respectively     

Test of Significance of Combined Regression ANOVA for k Predictor Variables Multiple Linear 

Regression  

We present the F-test provided by the method of analysis of variance (ANOVA). For the general case of k 

independent variables and the test is base on the F-ratio given as   

  

The overal variance in dependent (Y) can be splitted into   

Ʃ(𝑦𝑖 − 𝑦 )2 = Ʃ(𝑦 𝑖 − 𝑦 )2 + Ʃ(𝑦𝑖 − 𝑦 𝑖)2  

𝑆𝑆𝑇 = 𝑆𝑆𝑅  𝑆𝑆𝐸 where   

𝑆𝑆𝑇 is the total variation in dependent (Y).  

𝑆𝑆𝑅 is the regression variation in dependent (Y).  

𝑆𝑆𝐸 is the error (residual) variation.   

  

They are summarized in the table below.  

  

Table 1: Analysis of Variance (based onk Predictor Variables)  

Source   Degree of Freedom   Sum of Squares      Mean Square                   F-Ratio     P-Value  

 
Regression                  k                   SSR                         MSR=SSR/kFobs=MSR/MSE  

Error                        n-k-1                SSE                        MSE=SSE/(n-k-1)      ---  

 
Total                          n-1                 SST                              ---                         ---  

The F-ratio above described above is the test statistics for the null hypothesis  

H0: b1 = ... = bk = 0       (Y is not linearly associated with and of the independent variables) H1: Not all bj = 0           

(At least one of the independent variables is associated with dependent variable.)  

From F-distribution with 𝑣1and 𝑣2 degree of freedom with selected significance level. A null hypothesis is 

accepted if the test statistics is less than the table value. Otherwise, null hypothesis is rejected. That is Fobs  

F ,k,n−k−1  
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P-value: Area in the F-distribution to the right of Fobs.  

Table 2: Results of Varying Shrinkage Penalty Values on the Selected Economic Variables Data  

K  OLS  Ridge   Sub-Ridge  Multi-Ridge  Inverse-Ridge  

0.000000 13.132 

3  

-0.4061  

-0.0372  

-2.6536  

0.0327  

13.132 

3  

-0.4061  

-0.0372  

-2.6536  

0.0327  

  13.1323 -

0.4061  

-0.0372  

-2.6536  

0.0327  

  0.0000  

0.0000  

0.0000  

0.0000  

0.0000  

  0.0000  

0.0000  

0.0000  

0.0000  

0.0000  

  

0.000005      

13.132 

3  

-0.4061  

-0.0372  

-2.6536  

0.0327  

tx  

5.61  

-  

0.73  

-  

0.84  

-  

3.60   

2.55  

  

13.1323 -

0.4061  

-0.0372  

-2.6536  

0.0327  

tx  

5.61  

-0.73  

-0.84  

-3.60  

2.55  

  

2626500 

0  

-812000  

-74000  

- 

5307000   

65000  

tx  

1122435  

-1468354  

-16666667  

- 

7.1911056  

5078125  

  

0.000006566  

- 

0.000000020 

3   

-0.000000019   

-0.000001327  

-0.000000016  

tx  

0.0000028  

-  

0.00000003 

7  

-  

0.00000004 

3 -0.00018   

0.000125  

0.000007    13.132 

3  

-0.4061  

-0.0372  

-2.6536  

0.0327  

  

-  

0.73  

-  

0.84  

-  

3.60   

2.56  

13.1324 -

0.4062  

-0.0372  

-2.6536  

0.00327  

  

-0.73  

-0.84  

-3.60  

2.56  

1876000  

-58000  

-5300 -

379100  

4700  

801709.4  

04882.5  

-119369.4 -

513685.6  

367187.5  

9.0926  

1.2986  

0.0346  

2.1647  

0.0197  

3.89 -2.35  

0.78 -2.93  

1.54  
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0.00005    
13.131 

9  

-0.4061  

-0.0372  

-2.6535  

5.61  

-  

0.73  

-  

0.83  

13.1328 -

0.4062  

-0.0372  

-2.6537  

0.0327  

5.61  

-0.73  

-0.84  

-3.60  

2.55  

262650  

-8120  

-740 -

53070  

650  

112243.6  

-14683.5  

-16666.7  

-71910.6  

50781.3  

0.0006566  

-0.0000203  

-0.000019 -

0.0001327  

0.0000016  

0.00028  

-0.000038  

-0.000043  

-0.00018  

0.000125  

0.0327  - 

3.60  

2.55  

0.99999    7.8091  3.34  44.3446  18.95  13.1325  5.61  13.1322  5.61  

0.3414  0.62  -4.9423  -8.99  -0.4061  -0.73  -0.4061  -0.73  

-0.0566   0.0870  1.96  -0.0372  -0.84  -0.0372  -0.84  

1.27  

-1.3887   -13.83 -2.6536  -3.60  -2.6535  -3.60  

- 10.0989  

0.0213    7.88  0.0327  2.55  0.0327  2.55  

1.88 

0.1008  

1.66  

0.999999   7.8091  3.34  44.3455  18.95  13.1324  5.61  13.1323  5.61  

0.3414  0.62  -4.9425  1.70  -0.4061  -0.73  -0.4061  -0.73  

-0.0566   0.0870  1.96  -0.0372  -0.84  -0.0372  -0.84  

-1.3887  1.27   -13.68 -2.6536  -3.60  -2.6536  -3.60  

- 10.0991  

0.0213    7.88  0.0327  2.55  0.0327  2.55  

1.88 

0.1008  

1.66  

1.000006   7.8091  3.34  44.3463  18.95  13.1323  561  13.1324  5.6  

0.3414  0.62  -4.9426  -8.94  -0.4061  -0.73  -0.4061  -0.73  

-0.0566   0.0870  2.00  -0.0372  -0.84  -0.0372  -0.84  

1.27  
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-1.3887   -13.68 -2.6536  -3.60  -2.6536  -360  

- 10.0993  

0.0213    7.88  -0.00327  2.56  0.0327  2.55  

1.88 

0.1008  

1.66  

  

Table 3: Comparison of known (Additive) and Multi-Ridge Results of Varying Shrinkage Penalty Values on the 

Selected Economic Variables Data.  

  

K  OLS  Ridge   K  Multi-Ridge  

0.000000  13.132 

3  

13.132 

3  

  0.999999  13.1325 5.61  

-0.4061  -0.73  

-0.4061  

-0.0372  

-2.6536  

0.0327  

-0.4061  

-0.0372  

-2.6536  

0.0327  

  -0.0372  

-2.6536  

0.0327  

-0.84  

-3.60  

2.55  

0.000005      

13.132 

3  

-0.4061  

-0.0372  

-2.6536  

0.0327  

tx  

5.61  

-  

0.73  

-  

0.84   

-  

3.60   

2.55  

1.000006    

13.1323  

-0.4061  

-0.0372  

-2.6536  

-0.00327  

tx  

5.61  

-0.73  

-0.84  

-3.60  

2.56  
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0.000007    13.132 

3  

-0.4061  

-0.0372  

-2.6536  

0.0327  

  

-  

0.73  

-  

0.84  

-  

3.60   

2.56  

1.000009  

  

13.1322 -

0.4061  

-0.0372  

-2.6535  

0.0327  

561  

-0.73  

-0.84  

-3.60  

2.56  

0.00005    13.131 

9  

-0.4061  

-0.0372  

-2.6535  

0.0327  

5.61  

-  

0.73  

-  

0.83  

-  

3.60   

2.55  

1.00001  13.1322 -

0.4061  

-0.0372  

-2.6535  

0.0327  

-0.73  

-0.84  

-3.60  

2.56  

0.00008    13.131 

6  

-0.4060  

-0.0372  

-2.6534  

0.0327  

  

-  

0.73  

-  

0.84  

-  

3.60   

2.56  

1.00002  13.1321 -

0.4061  

-0.0372  

-2.6535  

0.0327  

  

-0.73  

-0.84  

-3.60  

2.56  
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0.0005    13.127 

8  

-0.4055  

-0.0372  

-2.6525  

0.0327  

5.61  

-  

0.73  

-  

0.83  

-  

3.59   

2.55  

1.00003  13.1319  

-0.4061  

-0.0372  

-2.6535  

0.0327  

  

-0.73  

-0.84  

-3.60  

2.56  

0.0009    13.124 

2  

-0.4050  

-0.0373  

-2.6516  

0.0327  

  

-  

0.73  

-  

0.84  

-  

3.59   

2.55  

1.00008  13.1313 -

0.4061  

-0.0372  

-2.6534  

0.0327  

  

-0.73  

-0.84  

-3.60  

2.56  

0.005    

13.087 

0  

-0.3997  

-0.0374  

-2.6428  

0.0326  

5.59  

-  

0.72  

-  

0.84  

-  

3.58   

1.00009  13.1312 -

0.4061  

-0.0372  

-2.6533  

0.0327  

  

-0.73  

-0.84  

-3.60  

2.56  

2.55  

Discussion of Results  

The results in table 2 revealed that for the shrinkage factor k=0.000000, the OLS, Ridge and Subridge regressions 

have equal coefficients, while the proposed Mult-Ridge and Inverse-Ridge have coefficients of zeros all through. 

For the shrinkage factor k=0.000005, the Ridge and Sub-Ridge regressions maintained the same coefficients as 

with the shrinkage of k=0.000000, while, the MultRidge and Inverse-Ridge regressions parameters increased out 
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of bound, likewise its t-values. As the shrinkage factor k increased to k=0.000007, the Ridge and Sub-Ridge 

regressions parameters differed in the gradients of exchange rate from -0.4061 to -0.4062, also, they differed in 

the gradients of the FDI, while, the Ridge regression was equal to the OLS for the shrinkage k=0.000007. Hence, 

k=0.000007 was proposed as the shrinkage penalty for Ridge regression. That is to say, whether the data has 

multicollinearity or not, the Ridge regression will have equal estimation of parameters with the OLS when the 

shrinkage penalty k of the Ridge regression is 0.000007. This serves as a big advantage to researchers, especially 

those that deal on big data, because, needless of testing for multicollinearity, as it could be time consuming. As 

the k increases further, the Ridge and the Sub-Ridge estimates continue to differ, even more visibly away from 

the estimates of the OLS, while the Mult-Ridge and Inverse-Ridge estimates become closer to each other and 

tending towards the OLS estimates. As the k increased to k=0.999999, the Inverse-Ridge estimates became equal 

to the OLS, and the value k=0.999999 was proposed as the shrinkage penalty for Inverse-Ridge. As k increased 

to 1.000006, the Mult-Ridge estimates became equal to the OLS, as such, k=1.000006 was proposed as the 

shrinkage penalty for Mult-Ridge regression. The implications of these findings, was to provide diverse method 

of solving regression problem instead of using just OLS when there is no multicollinearity in the data or using 

Ridge when there is multicollinearity in the data set(s). Also, the methods, overcomes the barrier of testing for 

multicollinearity in a data, instead, use any of the methods, Ridge, Sub-Ridge, Multi-Ridge and Inverse-Ridge 

methods with their respective shrinkage penalty. The OLS was not condemned, rather, it was used as the basis 

for judging these methods.    

Conclusion   

The study concludes that multiplicative (mult-ridge) and Inverse-ridge regression methods should be applied with 

1.000006 and 0.999999 shrinkage penalty respectively in order to overcome the extra work of testing the data for 

outlier and multicollinearity. With the proposed shrinkage value, the proposed methods yield same results with 

the OLS, whether with or without outlier or multicollinearity.  

Contribution to knowledge  

The study was able to show that, needless of testing for outlier or multicollinearity in a data set, when trying to 

use regression approach in estimating parameters of a model. Instead, used either of mult-ridge with 1.000006 

shrinkage penalty or inverse-ridge with 0.999999 shrinkage penalty.  
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