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Abstract: We reviewed the utility based option trading and hedging approach as well as other results under the 

asymptotic analytical approximation method and introduced the option hedging problem which clearly illustrates 

the intuition behind the hedging bandwidth and volatility adjustment. However, we used the multi-period measure 

determine the absolute risk aversion to formulate a dynamic spectrum of variation for the market risk. Hence, 

determine the best hedging strategy under the frame work of utility based hedging method, the hedger’s value 

function, market volatility, the rate of purchase (call) and sales (put) on risky assets with sufficient precision.   
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INTRODUCTION  

A variety of approaches have been suggested to deal with the problem of option pricing and hedging with 

transaction costs. (See Clewlow and Hodges (1997), Martellini and Priaulet (2002), and VeleriZakamouline 

(2004). However, their numerical algorithm is cumbersome to implement and the calculation of the optimal hedging 

strategy is time consuming. However, in modern finance it is customary to describe risk preferences by a utility 

function. The expected utility theory maintains that individuals behave as if they were maximizing the expectation 

of some utility function in all possible outcomes. Hodges and Neuberger (1989) pioneered the option pricing and 

hedging approach based on this theory. According to the utility-based approach, the qualitative description of the 

optimal hedging strategy is as follows: do nothing when the hedge ratio lies within a so-called “no transaction 

region” and rehedge to the nearest boundary of the no transaction region as soon as the hedge ratio moves out of 

the no transaction region. One commonly used simplification of the optimal hedging strategy, widely used in 

practice, is known as hedging to a fixed bandwidth around delta   . This strategy prescribes to rehedge 

when the hedge ratio moves outside of the prescribed tolerance from the corresponding BlackScholes delta. Since 

there are no explicit solutions for the utility-based hedging with transaction costs and the numerical methods are 

computationally hard. For practical applications, it is of major importance to use other alternatives.  One of such 

alternatives is to calibrate a rehegding function when some parameters in the problem assume large or small values. 
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Whalley and Wilmott (1997) were the first to provide this analysis of the model of Hodges and Neuberger (1989) 

assuming that transaction costs are small. Barles and Soner (1998) performed an alternative asymptotic analysis 

of the same model assuming that both the transaction costs and the hedger’s risk tolerance are small. However, the 

results of Barles and Soner (1998) are quite different from those of Whalley and Wilmott (1997). Whalley and 

Wilmott (1997) derive only an optimal form of the hedging bandwidth centered around the Black-Scholes delta, 

but with different delta (adjusted price of the option) specification.   

The Utility-Based Hedging Strategy   

 Here, we reviewed the utility based option trading and hedging approach as well as other results under the 

asymptotic analytical approximation method and introduced the option hedging problem which clearly illustrates 

the intuition behind the hedging bandwidth and volatility adjustment. However, the starting point for the utility-

based option pricing and hedging approach is to consider the optimal portfolio selection problem of the hedger who 

faces transaction costs and maximizes the expected utility of his terminal wealth. The hedger has a finite time 

horizon [𝑡; 𝑇], 𝑥𝑡    in the bank account, and 𝑦𝑡 shares of the stock at time t. 𝑆𝑡 and 𝑆𝑇 are the underlying asset prices 

at [𝑡; 𝑇]. The value function of the hedger with and with no option liability is defined as  

 𝐽𝑤(𝑡, 𝑥𝑡 , 𝑦𝑡, 𝑆𝑡, 𝐾) = 𝑚𝑎𝑥𝐸𝑡[𝑈(𝑥𝑇 + 𝑦𝑇 𝑆𝑇 − (𝑆𝑇 − 𝐾)+)] .    (1)       

And 0( , 𝑥𝑡, 𝑦𝑡, 𝑆𝑡) = 𝑚𝑎𝑥𝐸𝑡[𝑈(𝑥𝑇 + 𝑦𝑇 𝑆 𝑇)],        (2)  

 Where 𝛼 = (𝑥𝑇 + 𝑦𝑇 𝑆 𝑇).    (3)                             

 Is the utility value function.            

 THE HEDGING PROBLEM   

Consider a continuous time economy with one risk-free and one risky asset, which pays no dividends. We will refer 

to the risky asset as the stock, and assume that the price of the stock, St, evolves according to a diffusion process 

given by  𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡;   (4)                        

𝑑𝑆𝑡/𝑆𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡                                             

Where  and  are, respectively, the mean and volatility of the stock returns per unit of time, and Wt is a standard 

Brownian motion. The risk-free asset, commonly referred to as the bond or bank account, pays a constant interest 

rate of r  0. We consider hedging a short option with maturity T and strike price K. We assume that a purchase or 

sale of 𝛿𝑆 shares of the stock incurs transaction costs 𝜆|𝛿𝑆| proportional to the transaction (𝜆 ≥ 0). Denote the value 

of the option at time t as     

V (𝑆𝑡,  ) = 𝐾𝑒−𝑟(𝑇−𝑡).  (5)  

Where (𝑡, 𝑇) is the discount factor given by   
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(𝑡, 𝑇) = 𝑒−(𝑇−𝑡)  (6)  

The terminal payoff of the option one wishes to hedge is given by  

 𝑉 (𝑆𝑇,  ) = 𝑚𝑎𝑥 {𝑆𝑇 – 𝐾, 0} = (𝑆𝑇 − 𝐾)+ ,                   (7)                          

 As the stock price attains maximum, (8) According to Avellaneda et al 1994, when a hedger writes an option, he 

receives the value   of the option V (𝑆𝑡, 𝑡) and sets up a hedging portfolio by buying  shares of the stock and putting 

V (𝑆𝑡, 𝑡)−∆(1+λ)𝑆𝑡 in the bank account. As time goes, the writer rebalances the hedging portfolio according to some 

prescribed rule;                              

With   the unconditional Sharpe ratio of the hedged portfolio at maturity i.e.                          

𝑉(𝑆𝑇, 𝑇).                                          

With the certainty equivalent growth rate of the terminal wealth as measured by utility  

(𝛼) is (𝛼) = −𝑒−𝛾𝛼;   𝛾 > 0.(9a)  

(𝛼)  is the hedger’s utility function and it is assumed that the hedger has a negative or positive utility function, 

where 𝛾 is a measure of the hedger’s absolute risk aversion. (VeleriZaka, 2004).  

This particular choice of utility function might seem restrictive. However, as it was conjectured by Davis et al. 

(1993) and showed in Andersen and Damgaard (1999), an option price is approximately invariant to the specific 

form of the hedger’s utility function, and mainly, only the level of absolute risk aversion plays an important role. ( 

Zaka, 2004). In the Black-Scholes model, the risk position at time 𝑆𝑡 is modeled by a geometric Brownian  

Motion that is .  

Proposition 1   Let Z be a standard normal variable and X be a transformation of        

  Z:  𝑋 = h (z),   Then (𝑋; 𝛼) = 𝐸[ℎ(𝑧 + 𝛼)] ,which implies that  

 +α (9b)  

Where h is a continuous positive and decreasing function. It is straight to show that for a normal random variableZ.   

[𝑋 = ℎ(𝑍): 𝛼] = [ℎ(𝑍 + 𝛼𝐸[𝑋 = ℎ(𝑍): −𝛼] => 𝐻[𝑆𝑇 − 𝛼] = 𝑆0e
ZT+αT  (9c)  

If 𝑆𝑡 is the price of a security at time,   following a geometric Brownian motion so that  

    

Where 𝑊𝑡 is a Brownian motion under   then 𝑆𝑇 can be written as a function of the standard normal random 

variable Z. In this case     𝑆𝑇 = ℎ(𝑍)                                          

                                                                                    

Applying the kernel we have       (𝑆𝑇, 𝛼) =  [ℎ(𝑍 − 𝛼)]                                                                                         
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 For    simplifies to (𝑆𝑇, 𝛼) = 𝑆0𝑒−𝑟𝑐𝑇 Then the current price becomes 𝑒−𝑟𝑐T  (𝑆𝑇, 𝛼) =  𝑒−𝑟𝑐𝑇𝑆0𝑒−𝑟𝑐𝑇 = 𝑆0 .  

Thus, the parameter α calibrates the discounted certainty equivalent of the security price on future date to the initial 

price of security.  If we consider the pay-off of an European call option (with maturity T and strike price k) we have   

                 ST = C (ST, k) = (ST - k)                                                            (9d)  

Where ST is a lognormal random variable. Applying the kernel to this payoff with      Then,

  

                       (9e)  

And r is the risk free rate, which shows the Black-Scholes model for option trading.   

Where                  

ln (9f)  

Hedging To A Fixed Bandwidth  

 One commonly used simplification of the optimal hedging strategy is known as hedging to a fixed bandwidth 

around delta. This strategy prescribes to rehedge when the hedge ratio moves outside of the prescribed tolerance 

from the corresponding Black-Scholes delta. More formally, the boundaries of the no transaction region are defined 

by     (10)  

Where     is the Black-Scholes hedge,  and H is a given constant tolerance. The intuition behind this strategy is 

obvious: the parameter   is a proxy for the measure of risk of hedging portfolio.  

More risk averse hedger would choose a low H, while more risk tolerance hedgers will accept a higher value ofH.     

In the frame work of the utility based hedging approach, the option hedging strategy Is defined as the difference,  

(𝜏) − 𝑦0(𝜏), between the hedger’s optimal trading strategies with and without option liability. In the absence of 

transaction costs, the optimal number of shares the hedger would hold without and with option liability are given 

by (Davis et al. 1993).  

  ,     (11)  

 ,       (12)  
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Consequently, the option hedging strategy in the absence of transaction cost is simply the  

blackscholes strategy where 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑖𝑠𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝛾 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒𝑙𝑦 𝑢𝑛𝑘𝑛𝑜𝑤𝑛;   

.       (13)                         

 ,          (14)  

Where                                 

   .    (15)                        

   

Whalley and Wilmott (1997) show the boundaries of the no transaction region as;  

  .  (16) Barles and Soner (1998) performed an alternative asymptotic 

analysis of same model assuming that both the transaction costs and hedgers risk tolerance are small. They find that 

the optimal  

Hedging strategy is to keep the hedge ratio inside the no transaction region is given by                                            

      (17)  

 Where   is the black scholes hedge with an adjusted volatility?  

 .        (18)        

 The sensitivity of the option delta to the underlying asset price, is known as gamma.    

  .    (19)  

To decrease the amount of transaction costs, it makes sense to decrease the option gamma, at least in regions where 

it is high, thus making the option delta a flatter function of the underlying asset.  

The optimal trading policies in the presence and absent of transaction costs suggest the following general 

specifications of the hedgers no transaction region without and with option liability;  

      (20)   

, (21)  

In the presence of transaction cost;  

,     (22)  
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    (23)  

𝐻𝑜 is half of the width of the no transaction region without option liability, 𝐻𝑤 is an additional increase in the width 

of the no transaction region induced by the presence of an option. The two boundaries 𝐻𝑜 𝑎𝑛𝑑 𝐻𝑤 are computed in 

accordance with: for a fixed set parameters 𝑇 −  , numerically. Then  

    ,   (24)  

   .  (25 

Here,          ,     And     .  

  Are the upper and lower boundaries of the hedging bandwidth without and with?  

Option liability, given.  

  Obviously depends on the option gamma. In other words, when the option gamma approaches zero, the width 

of the no transaction region with option liability becomes equal to that of without option liability.  

  The functional form of the approximating function for 𝐻𝑜 𝑎𝑛𝑑 𝐻𝑤 are given to be;  

   𝐻𝑜 = 𝛼𝜎𝛽1𝜆𝛽2(𝛾𝑆)𝛽3𝛿(𝑡. 𝑇)4(𝑇 − 𝑡)𝛽5,    (26)  

  𝐻𝑤 = 𝛼𝑟𝛽1𝜎𝛽2𝜆𝛽3(𝛾𝑆)𝛽4(𝑁(𝑑1))𝛽5𝛿(𝑡. 𝑇)6(𝑇 − 𝑡)𝛽7(𝑒(𝑇−𝑡))𝛽8. (27)  

   (𝑑1)  is  the  cardinality of the Black- Scholes hedge, with the  volatility  are the boundary space.   

 Whalley and Willmolt (1997) as well as Barles and Soner (1998) used the numerical and asymptotic analytical 

approximation method (AAM) to reveal the underlying structure of the solution under realistic fixed model 

parameter but there is no explicit measure value to the absolute risk aversion parameter. However, their numerical 

computational algorithm is cumbersome to implement and time consuming. The option hedging strategy in the 

absence of transaction cost is simply the Black-Scholes. Consequently, the risk aversion parameter is largely 

unknown. Hence, failure of the sharpe ratio to capture the true nature of investment opportunities. To this, one 

cannot carry on the measurement of the hedging bandwidth, hedgers’ value function, volatility size and rate of 

transaction with sufficient precision.   

MODEL FORMULATION We consider the average multiperiod dimensional measure as the optimal extraction 

part to be   

 .                  

Let (𝑅𝑛, (𝑅𝑛)) be a measurable space and𝑓:̅ (𝑅𝑛) → 𝑅 be a measurable function.𝑓̅ ⊂ 𝛽(𝑅𝑛)With the gauge function   

 .  (28)  
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Here, 𝑓 ̅ is assumed to be the multifractal expectation at any given confidence level .  

  ∆𝛼 is the difference in singularity strength of market indices and (𝛼) is the multifractal function.                                                  

Here,                       

∆𝛼 = 1 − 𝛼     (29)  

𝐹(𝛼) = 𝑉(𝑆𝑇, )(𝑈(𝛼)).  (30)                                

We establish the gauge function to be;  

  

So that                                          

.                                                                 (32)                   

  Lemma   

The absolute risk aversion parameter for the continuous HARA utility based option hedging  and trading strategy,  

in the presence of the underlying market prices,  is  given by;                                             

 (33) Similarly, in the absence of the underlying market prices we have,                                             

                                                                      (34)        

We establish that the D-dimensional multiperiod measure under  

HARA on   a set 𝑓𝛼̅ (0,1) ≜ {𝑎: 0 < 𝐷 < 1} is given by  

 .                         (35)  

Define the optimal covering of this set using variable radius,. The multiperiod HARA – dimension measure 𝐷𝑀𝐻 is 

the value of (𝛾) at which 𝑀(𝛼) changes within the set of interval  (0,1) , while the dimension  can be calculated as 

(1.22) i.e.  

                                                     (36)     

(Where𝑁1 is the number of small pieces that go into the larger one and 𝑆1 is the scale to which the smaller pieces 

compare to the larger one). Equivalently for a given precision level, > 0, 𝑁1( ) satisfies a power law as → 0 so that 

𝑁1( )~ −𝐷.        

  is a constant called the fractal dimension, which helps to analyze the structure of a fixed multifractal.For a large 

class multi-fractals, the dimension 𝐷(𝛼) coincides with the multi-fractal spectrum. For any 𝛼 ≥ 0,  the set 𝐹(𝛼) can 

be defined as the HARA exponent  with a fractal dimension 𝐷(𝛼) satisfying 0 < 𝐷(𝛼) < 1.  
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Let (  be a measurable space and𝑓:̅ (𝑅𝑛) → 𝑅 be a measurable function.   

Let  be a real valued function on (𝑅𝑛), then the multiperiod spectrum with respect to the  

functions 𝛾 𝑎𝑛𝑑 𝛼  is given by;   

  

                                                           (𝛼) = inf( 𝜖𝑅: 𝑓(̅ 𝛼)) ≤ ∆𝛼.                                         (37)  

  

    

      ESTIMATION OF PARAMETERS   

Similarly, from (9), we establish that;  

.           

(16)      becomes;                                                                                                          

  

Where (17) becomes;  

.  

 Calibrating  (33) into  (17), 𝜎𝑚 𝑎𝑛𝑑 𝜎 can be estimated as:  

  

      .   (38)  

From , the rate of purchase (call) and sales (put) becomes,  

  

 .     (3.14) Then,                      

      . (39)   So that the functional form of   𝐻𝑜 𝑎𝑛𝑑 𝐻𝑤   becomes;  

,             (40)                                 
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.                               

 Hedging to a fixed bandwidth around delta  

 Recall that the option hedging strategy is defined as the difference between the hedger’s optimal trading strategies 

with and without option liability 𝑖𝑒 (𝜏) − 𝑦0(𝜏). In the absence of transaction costs, calibrating (33) into (11) and 

(12), the solutions for the optimal number of shares the hedger would hold without and with option liability   

becomes;     

,      (42)  

To this,   .  

 Under the optimal trading policy, for general specification of the hedgers no transaction region we  

have;    

 .      (43)  

As   𝐻𝑤 approaches zero,  

  ,                            

  

  .             

Calibrating (39) and (40) into (43),   we have;  

m 
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𝑡)5.                           (44)                                                                                                                                                

  Then (3.21) becomes;  

 

                                                          (45)                                 

 CONCLUSION  

This approach provides a simpler technique and policy for predicting the optimal portfolio investment policies. 

Meaning that, more risk averse hedger would choose a low constant tolerance (3.20), while more risk tolerance 

hedger will accept a higher value of it (3.21). To this, the management of the monetary amount invested in the risky 

asset through time, is independent of the total wealth but depends on the absolute risk aversion.     

44- : To the risk averse hedger; the width and increase in width of the option lies within the boundaries of the no 

transaction region. This means that, increase in 𝛾, increases the hedging bandwidth and decreases the risk of the 

hedged portfolio.  

45-: To the risk tolerance hedger; twice the width of the option lies within the boundaries of sthe no transaction 

region. Meaning that, decrease in 𝛾, decreases the hedging bandwidth and increases the risk of the hedged portfolio.      

REFERENCES  
Andersen, E. D. and Damgaard, A. (1999). Utility Based Option Pricing Proportional Transaction Costs and 

Diversification Problems:an Interior-Point Optimization Approach, Applied Numerical Mathematics, 29 

∶395–422.  

Avellandeda, M. Paras, A. (1994).Optimal Hedging Portfolios for Derivative Securities in the  

Presence of Large Transaction Costs, Applied Mathematical Finance,  1 ∶165-193  

 Barles, G. and Soner, H. M. (1998). Option Pricing with Transaction Costs and a Nonlinear BlackScholes Equation, 

Finance and Stochastics, 2 ∶369–397.  

 Clewlow, L. and Hodges, S. (1997). Optimal Delta-Hedging under Transaction Costs, Journal of Economic 

Dynamics and Control, 21 ∶1353–1376.  



ISSN: 3065-0577    

 

Research Article 

 

 
 

  | ISSN: 3065-0577  Page | 65 

 

 

 
 

                                                                                                       Published by Keith Publication 

  

  

International Journal of Data science and Statistics 

https://keithpub.com/ | ©2023 IJDSS | 

Vol: 11 N0: 03 

3 

 Davis, M.H.A., Panas,V.G., Zariphopoulou, T.(1993). European option pricing with transaction cost, SIAM 

Journal of Control and Optimization, 31(2) ∶470-493.  

Hodges, S.D. and Neuberger, A (1989). Optimal Replication of Contingent Claims under Transaction Cost. Review 

of Future Markets, 8: 222-239.   

 Lin Zhang. (2011) Multifractal Properties of the industry Indices for Chinese and Japanese Stock Markets. 2011 

3rd international conference on information and financial Engineering IPEDR LACSIT Press, Singapore.  

12 ∶2011..  

 Martellini, L. and Priaulet, P. (2010). Competing Methods for Option Hedging in the Presence of Transaction 

Costs, Journal of Derivatives, 9 (3) ∶26–38.  

 Valeri. I. and Zakamouline,(2004), Efficient Analytic Approximation of the Optimal Hedging Strategy for 

European Call Option with Transaction Costs. Stochastic Finance (2004), at Autumn School and 

International Conference.  

 Whalley, A. E. and Wilmott, P. (1993). Counting the Costs, RISK, 6 ∶59–6   

 Whalley, A. E. and Wilmott, P. (1997). An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing 

with Transaction Costs, Mathematical Finance, 7 (3) 307–324.  


