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Abstract: We reviewed the utility based option trading and hedging approach as well as other results under the
asymptotic analytical approximation method and introduced the option hedging problem which clearly illustrates
the intuition behind the hedging bandwidth and volatility adjustment. However, we used the multi-period measure
determine the absolute risk aversion to formulate a dynamic spectrum of variation for the market risk. Hence,
determine the best hedging strategy under the frame work of utility based hedging method, the hedger’s value
function, market volatility, the rate of purchase (call) and sales (put) on risky assets with sufficient precision.
Keywords: Utility Based, Hedging Strategy, Multi-period Measure, Absolute Risk Averse and Market Volatility

INTRODUCTION

A variety of approaches have been suggested to deal with the problem of option pricing and hedging with
transaction costs. (See Clewlow and Hodges (1997), Martellini and Priaulet (2002), and VeleriZakamouline
(2004). However, their numerical algorithm is cumbersome to implement and the calculation of the optimal hedging
strategy is time consuming. However, in modern finance it is customary to describe risk preferences by a utility
function. The expected utility theory maintains that individuals behave as if they were maximizing the expectation
of some utility function in all possible outcomes. Hodges and Neuberger (1989) pioneered the option pricing and
hedging approach based on this theory. According to the utility-based approach, the qualitative description of the
optimal hedging strategy is as follows: do nothing when the hedge ratio lies within a so-called “no transaction
region” and rehedge to the nearest boundary of the no transaction region as soon as the hedge ratio moves out of
the no transaction region. One commonly used simplification of the optimal hedging strategy, widely used in
practice, is known as hedging to a fixed bandwidth around delta A= % + H. This strategy prescribes to rehedge
when the hedge ratio moves outside of the prescribed tolerance from the corresponding BlackScholes delta. Since
there are no explicit solutions for the utility-based hedging with transaction costs and the numerical methods are
computationally hard. For practical applications, it is of major importance to use other alternatives. One of such
alternatives is to calibrate a rehegding function when some parameters in the problem assume large or small values.
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Whalley and Wilmott (1997) were the first to provide this analysis of the model of Hodges and Neuberger (1989)
assuming that transaction costs are small. Barles and Soner (1998) performed an alternative asymptotic analysis
of the same model assuming that both the transaction costs and the hedger’s risk tolerance are small. However, the
results of Barles and Soner (1998) are quite different from those of Whalley and Wilmott (1997). Whalley and
Wilmott (1997) derive only an optimal form of the hedging bandwidth centered around the Black-Scholes +delta,
but with different delta (adjusted price of the option) specification.
The Utility-Based Hedging Strategy

Here, we reviewed the utility based option trading and hedging approach as well as other results under the
asymptotic analytical approximation method and introduced the option hedging problem which clearly illustrates
the intuition behind the hedging bandwidth and volatility adjustment. However, the starting point for the utility-
based option pricing and hedging approach is to consider the optimal portfolio selection problem of the hedger who
faces transaction costs and maximizes the expected utility of his terminal wealth. The hedger has a finite time
horizon [t; T], x: in the bank account, and y: shares of the stock at time t. St and St are the underlying asset prices
at [t; T]. The value function of the hedger with and with no option liability is defined as

Jw(t, xt, yt, St, K) = maxE{U(xr + yr ST — (ST — K)")] . (1)
And 0(, xt, yt, St) = maxEU(xr + yr S 1)], (2

Where a = (xr+yr St). (3)

Is the utility value function.

THE HEDGING PROBLEM

Consider a continuous time economy with one risk-free and one risky asset, which pays no dividends. We will refer
to the risky asset as the stock, and assume that the price of the stock, St, evolves according to a diffusion process
given by t = uStdt + aStdWt; (4)

dSt/St = udt + adW't
Where p and o are, respectively, the mean and volatility of the stock returns per unit of time, and Wt is a standard
Brownian motion. The risk-free asset, commonly referred to as the bond or bank account, pays a constant interest
rate of r = 0. We consider hedging a short option with maturity T and strike price K. We assume that a purchase or
sale of 85 shares of the stock incurs transaction costs A|6S| proportional to the transaction (1 > 0). Denote the value
of the option at time t as
V (St, ) =Ke T, (5)
Where (t, T) is the discount factor given by
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(t,T) = e (170 (6)
The terminal payoff of the option one wishes to hedge is given by

V (St, ) =max {ST - K, 0} = (St — K)*, 7

As the stock price attains maximum, (8) According to Avellaneda et al 1994, when a hedger writes an option, he
receives the value of the option V (S, t) and sets up a hedging portfolio by buying A shares of the stock and putting
V (St, t)—A(1+)1)S¢ in the bank account. As time goes, the writer rebalances the hedging portfolio according to some
prescribed rule;
With the unconditional Sharpe ratio of the hedged portfolio at maturity i.e.
V(Sr, T).
With the certainty equivalent growth rate of the terminal wealth as measured by utility
(a) is (@) =—er%; ¥ >0.(9)
(a) is the hedger’s utility function and it is assumed that the hedger has a negative or positive utility function,
where y is a measure of the hedger’s absolute risk aversion. (VeleriZaka, 2004).
This particular choice of utility function might seem restrictive. However, as it was conjectured by Dauvis et al.
(1993) and showed in Andersen and Damgaard (1999), an option price is approximately invariant to the specific
form of the hedger’s utility function, and mainly, only the level of absolute risk aversion plays an important role. (
Zaka, 2004). In the Black-Scholes model, the risk position at time St is modeled by a geometric Brownian
Motion that isSoe(“'a-T) to Wyt = 0.
Proposition 1 Let Z be a standard normal variable and X be a transformation of

Z: X=h(z), Then (X; @) = E[h(z + )] ,which implies that

H(X;a) = [,"P[h(Z + a) > t]dt = E[h(Z + a)] = Spe?T+a (9b)
Where h is a continuous positive and decreasing function. It is straight to show that for a normal random variableZ.
[X =h(Z): a] = [W(Z + aE[X = h(Z): —a] => H[ST— a] = Soe?T**T (9c)
If St is the price of a security at time, t following a geometric Brownian motion so that

2
—"T t+oW;

S, = soe(“ )
Where W+ is a Brownian motion under P then St can be written as a function of the standard normal random
variable Z. In thiscase  Sr= h(Z)

h(x) — Soe(u—%z)T+a\fo

Applying the kernel we have  (St, @) =E [h(Z — a)]
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E(Soe(u—%z)'[#m/ﬁ—a\ﬁ _ Soe(,u—az—z)T+a\/ﬁ+a?2

For ¢ = % simplifies to (St, @) = Soe <T Then the current price becomes e T (St, a) = e "<TSoe "<T = Sy .
Thus, the parameter a calibrates the discounted certainty equivalent of the security price on future date to the initial
price of security. If we consider the pay-off of an European call option (with maturity T and strike price k) we have

St=C(St,k)=(St-k) (9d)
Where St is a lognormal random variable. Applying the kernel to this payoff with @ = 22T Then,

e TH[C(Xr, K): —a] = Sop(In () + (Z2) 7 - e-r—r,@w _ T

aVT
0 +62 - ln(x_o) +(T+26 ) a
= o (In () + (557)) T e Tk == - 4T (%)
And r is the risk free rate, which shows the Black-Scholes model for option trading.
Where
n G+ _ a9
T = as

Hedging To A Fixed Bandwidth

One commonly used simplification of the optimal hedging strategy is known as hedging to a fixed bandwidth
around delta. This strategy prescribes to rehedge when the hedge ratio moves outside of the prescribed tolerance
from the corresponding Black-Scholes delta. More formally, the boundaries of the no transaction region are defined

_ v
by A=22+H (10)

Where g—z is the Black-Scholes hedge, and H is a given constant tolerance. The intuition behind this strategy is

obvious: the parameter H is a proxy for the measure of risk of hedging portfolio.

More risk averse hedger would choose a low H, while more risk tolerance hedgers will accept a higher value ofH.
In the frame work of the utility based hedging approach, the option hedging strategy Is defined as the difference,
(t) — yo(t), between the hedger’s optimal trading strategies with and without option liability. In the absence of
transaction costs, the optimal number of shares the hedger would hold without and with option liability are given

by (Davis et al. 1993).
S(t,T -7

— E,S )(lua-z ) ’ (11)

_ 8T (u-r) | v

o ¥S a? + as’

0

(12)

w
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Consequently, the option hedging strategy in the absence of transaction cost is simply the
blackscholes strategy where the absolute risk parameter y is largely unknown,;

av
A=yy =y =55 (13)
av
S=N@), (14
Where
log(%)+(r+%az)(r—t)

N(d,) = o /7D

(15)

Whalley and Wilmott (1997) show the boundaries of the no transaction region as;

A=2 T “t+H = N(d,) + (g #) (16) Barles and Soner (1998) performed an alternative asymptotic
analysis of same model assuming that both the transaction costs and hedgers risk tolerance are small. They find that
the optimal

Hedging strategy is to keep the hedge ratio inside the no transaction region is given by

"o__ 3V((0’m) 2 2
A= asiH = ilysg(l ySer) (17)

Where % is the black scholes hedge with an adjusted volatility?

gl =0 (1 + f(e'"(T‘t)iLZySZF)). (18)
The sensitivity of the option delta to the underlying asset price, is known as gamma.

_ _N(dy)
T So(T-0) (19)

To decrease the amount of transaction costs, it makes sense to decrease the option gamma, at least in regions where
it is high, thus making the option delta a flatter function of the underlying asset.
The optimal trading policies in the presence and absent of transaction costs suggest the following general
specifications of the hedgers no transaction region without and with option liability;
Yo ( ) 5(t T) (ﬂ T) + H (20)
5 tT
Y (T) = ( )” ﬂ + 22+ (Ho + Hy), (21)
In the presence of transaction cost;
K&8(t,T
yo(r) = =B b, (22)
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K8(tT) (u-r) | 8V
(1) ===+ o (Ho + Hy), (29)
H, is half of the width of the no transaction region without option liability, Hw is an additional increase in the width

of the no transaction region induced by the presence of an option. The two boundaries Ho and Hw are computed in

accordance with: for a fixed set parameters T — ¢,7, g, 4, yS,% , humerically. Then

Hy =220 (29)

H, =220, (@5

Here, 2H, =y2—y?, And 2H, + H, =y —y".

y.'s and y,'s Are the upper and lower boundaries of the hedging bandwidth without and with?

Option liability, given.

H , Obviously depends on the option gamma. In other words, when the option gamma approaches zero, the width
of the no transaction region with option liability becomes equal to that of without option liability.

The functional form of the approximating function for Ho, and Hw are given to be;

Ho = acP AP (yS)BS(t. T)XT — )P,  (26)

Huw = arfiab2)B3(yS)B4(N(d1))B58(t. T)8(T — t)B7(eT9)88, (27)

(dv) is the cardinality of the Black- Scholes hedge, with the volatility a, and B;'s are the boundary space.
Whalley and Willmolt (1997) as well as Barles and Soner (1998) used the numerical and asymptotic analytical
approximation method (AAM) to reveal the underlying structure of the solution under realistic fixed model
parameter but there is no explicit measure value to the absolute risk aversion parameter. However, their numerical
computational algorithm is cumbersome to implement and time consuming. The option hedging strategy in the
absence of transaction cost is simply the Black-Scholes. Consequently, the risk aversion parameter is largely
unknown. Hence, failure of the sharpe ratio to capture the true nature of investment opportunities. To this, one
cannot carry on the measurement of the hedging bandwidth, hedgers’ value function, volatility size and rate of
transaction with sufficient precision.

MODEL FORMULATION We consider the average multiperiod dimensional measure as the optimal extraction
part to be

DMH £ f = ﬁfﬁm F(a)da .
Let (R, (R™)) be a measurable space andf: (R") — R be a measurable function.f c S(R")With the gauge function
2f (a,b) = ﬁ j0°° F(a)da . (28)
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Here, f is assumed to be the multifractal expectation at any given confidence levela.
A« is the difference in singularity strength of market indices and («) is the multifractal function.
Here,
Aa=1—-a (29)
F(a)=V(Sr, T)(U(a)). (30)
We establish the gauge function to be;

= 1
) = |- |5y >0 (31)
So that
1
= |= : 32
Y |fa{o,1)ﬂ’1 | ( )
Lemma
The absolute risk aversion parameter for the continuous HARA utility based option hedging and trading strategy,
in the presence of the underlying market prices, is givenby; y = |};’((;—:)Z)
alY, a
(33) Similarly, in the absence of the underlying market prices we have,
1
V= | fa(o,n/-\“ | (34)

We establish that the D-dimensional multiperiod measure under

HARA on aset fo (012 {a: 0 <D <1} is given by

MD(ﬂ)=li§32kr,?;D>o;rk< : (35)

Define the optimal covering of this set using variable radius,. The multiperiod HARA — dimension measure Du# iS
the value of (y) at which M(a) changes within the set of interval (0,1) , while the dimension D can be calculated as

(1.22) ie.
__loghN,
b= log $, (36)

(WhereN1 is the number of small pieces that go into the larger one and S is the scale to which the smaller pieces
compare to the larger one). Equivalently for a given precision level, > 0, N1() satisfies a power law as — 0 so that
N1()~ P.

D is a constant called the fractal dimension, which helps to analyze the structure of a fixed multifractal.For a large
class multi-fractals, the dimension D(«) coincides with the multi-fractal spectrum. For any a >0, the set F(a) can
be defined as the HARA exponent a with a fractal dimension D(«a) satisfying 0 < D(a) < 1.
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Let (R™, B(R™)) be a measurable space andf: (R") — R be a measurable function.
Let o be a real valued function on (R%), then the multiperiod spectrum with respect to the
functions y and a is given by;

(@) = inf( eR: f{@)) < Aa. (37)

ESTIMATION OF PARAMETERS
Similarly, from (9), we establish that;
U(a) = —e 'T@a%;, > 0.

(16)  becomes;
3 1
A= N(d,) + (Ee"’(T‘t)ASTZ fAa)z

Where (17) becomes;

_ dV(om) |, f(Aa) 2r S%r
A= as t S g4 [ﬁAa)D'

Calibrating (33) into (17), om and o can be estimated as:

= o . (38)
(1+7(8(tT)22 52r/fda)

From o, the rate of purchase (call) and sales (put) becomes,
_ | o*=fha(oh)
A= /W . (3.14) Then,
S _ o _an(UIZn)
Al g2 f@é@mazr - (39) Sothatthe functional form of Ho and Hw becomes;

B4
282 (yS)P8(£.TYP+(T — )P, (40)

2
Im

H,=a -
(1+£(8(t.1)A2 521 /fAa))
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B2

— B Tm B3y \Ba( N Bs Bo (T _ £\B7(o(T—t)\Bs
H, = ar J(1+f(5(t,7‘)12521“/fﬂa)) AP3(yS)P+(N'(d,))P=8(t. T)Pe(T — t)P7 (e ~%)Pe.

(41)

Hedging to a fixed bandwidth around delta

Recall that the option hedging strategy is defined as the difference between the hedger’s optimal trading strategies
with and without option liability ie (7) — yo(z). In the absence of transaction costs, calibrating (33) into (11) and
(12), the solutions for the optimal number of shares the hedger would hold without and with option liability

becomes;
S(tT)(p—-r)F(A av
0o = B (@2)

: av
To thIS, Vo — Yo = E a. s
Under the optimal trading policy, for general specification of the hedgers no transaction region we
have;

av

yw(T)_yD(T) ==Ei(h’o +Hw)iHo- (43)

As Hyw approaches zero,
av
Yw(T) = Yo(T) = s + (H,) £ H, ,

B log(%)+(r+%a‘2)(’1'—t) 0
Calibrating (39) and (40) into (43), we have;

B1
log(%)+(r+%a’2)(T—t) o2, B B Ba B
Yo (1) = Yo (2) s *a (o Enmag) APz (ySHPs8 (L. TYF+(T — 0)Fs +
fAa
Bz
in . 1 ,
arb - S(ZTMZ - ABs + (1/]F [E]) SYPa(N'(d)P58(t. TYPs (T —
G
B1
B~ (T—t)\Bs Tin B2 B3 Ba —
t)r7(e )P + o STz ST APz (ySHYFP2S(t. TYP+(T
(“f (P ))
m
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t)°. (44)
Then (3.21) becomes;
B
log(%)+(r+%o‘z)('r—t) + 2 oh o2+ fha(oh,) & +
o/ (T-t) Lzaa ( - dm,r;ﬁ 52r)) \‘ a2 f(5(t,T)S2r -
1 1 a2+ fAa(c)
(Y712 ( /W))ﬂsd(t. TYR(T = 0)Fs. (45)

CONCLUSION

This approach provides a simpler technique and policy for predicting the optimal portfolio investment policies.
Meaning that, more risk averse hedger would choose a low constant tolerance (3.20), while more risk tolerance
hedger will accept a higher value of it (3.21). To this, the management of the monetary amount invested in the risky
asset through time, is independent of the total wealth but depends on the absolute risk aversion.

44- : To the risk averse hedger; the width and increase in width of the option lies within the boundaries of the no
transaction region. This means that, increase in y, increases the hedging bandwidth and decreases the risk of the
hedged portfolio.

45-: To the risk tolerance hedger; twice the width of the option lies within the boundaries of sthe no transaction
region. Meaning that, decrease in y, decreases the hedging bandwidth and increases the risk of the hedged portfolio.
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