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Abstract 
In this paper we introduce a latent variable based model for the dynamics of financial range, the stochastic 
conditional range (SCR). We propose to estimate its parameters by Kalman filter, indirect inference and simulated 
maximum likelihood depending on the hypotheses on the distributional form of the innovations. The model is 
applied to a large subset of the S&P 500 components. A comparison of its fitting and forecasting abilities with the 
conditional autoregressive range (CARR) model shows that the new approach can provide a competitive alternative. 
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1. Introduction 

It is a well-known phenomenon that financial time series exhibit volatility clustering. A very large literature on 

the dynamics of returns has developed since the seminal contributions of Engle (1982), Bollerslev (1986) and 

Taylor (2008) on GARCH and stochastic volatility. Most of this literature concentrates on the dynamics of the 

differences of closing prices of the reference period as a means of describing the subtle concept of volatility. 

Parkinson (1980) suggested that the use of extreme price values can provide a superior estimate of volatility than 

returns. The potential advantages of using price range as an alternative were also pointed out by Alizadeh et al. 

(2002), who claimed to “show theoretically, numerically, and empirically that range-based volatility proxies are 

not only highly efficient, but also approximately Gaussian and robust to microstructure noise”, while Brandt and 

Diebold (2006) noticed that range “is a highly efficient volatility proxy, distilling volatility information from the 

entire intraday price path, in contrast to volatility proxies based on the daily return, such as the daily squared 

return, which use only the opening and closing prices”.  

Chou (2005) proposed a dynamic model, the conditional autoregressive range (CARR) for the evolution of 

high/low range who mimics the structure of the ACD model of Engle and Russell (1998) for inter trade durations. 

This line of modelling has desirable statistical and empirical properties and the search for its refinements and 

extensions can draw from the wide body of ACD literature. In this article we introduce a latent variable based 

variant of the CARR model: the stochastic conditional range (SCR) model. In this new formulation, the dynamics 

of the ranges are driven by a latent variable which is supposed to capture the unobserved information flow that 

reaches the market. The specification of the model is multiplicative, like in the CARR model, but its main 
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difference is that the SCR has two stochastic innovations, one affecting the observed range and the other the latent 

variable. The model can be seen as characterized by a mixture of distributions, or, in following Cox (1981), as 

parameter-driven. This specification also shares most of the statistical characteristics of the stochastic conditional 

duration (SCD) model of Bauwens and Veredas (2004). In section 2, we will present the model and discuss some 

of its properties.   

In section 3 we propose three methods for estimation: maximum likelihood based on Kalman filter or on 

numerical integration of the latent variable and indirect inference. A comparison on the fitting and predictive 

capabilities of CARR and SCR models is carried out for a large sample of stocks in section 4. Results show that 

the SCR provides more reliable estimates of the autocorrelations of the data process, while in terms of forecasting 

accuracy it is comparable to CARR. Section 5 concludes.  

2 The model 

Let 𝑝𝜏 the price of a financial asset sampled at frequent (e.g.minutes or seconds) time intervals , and 𝑃𝜏 = 

(𝑝𝜏) its logarithm. We define as range the difference 𝑅𝑡 = (𝑃𝑡) − (𝑃𝑡), where indicates a coarser set of  

time intervals (e.g. days, weeks) such that ,  (1)  

Where   is the number of frequent intervals contained in one of the coarser intervals indexed by t.  

The conditional autoregressive range CARR(1,1), introduced by Chou (2005), is defined by the following 

equations:  

  𝑅𝑡 = Ψ𝑡𝜀𝑡  (2)  

  Ψ𝑡 = 𝜔 + 𝛼𝑅𝑡−1 + 𝛽Ψ𝑡−1  (3)  

 with   

  𝜔 > 0,    𝛼 ≥ 0,    𝛽 ≥ 0,  

  

where the baseline range (the error) εt has a distribution with density function p(ε|It), which has positive support 

and unit mean. It denotes the information set at time t-1, and it includes the past values of Rt and ψt. Computing 

moments and autocorrelation for the CARR(1,1) model is easy and one can obtain the following simple 

expression:   

  

  ,  (4)  

   (5)  

   (6)  

  𝜌𝑛 = (𝛼 + 𝛽)−1    (𝑛 > 1).  (7)  
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We introduce the stochastic conditional range (SCR) as the process described as follows: 

  𝑅𝑡 = 𝑒𝜓𝑡 𝜀𝑡  (8)  

  𝜓𝑡 = 𝜔 + 𝛽𝜓𝑡−1 + 𝜎𝑢𝑡,  (9) 

where ut|It  has an iid standard normal distribution and εt|It has, like in the case of CARR, a distribution defined 

on the positive axis with unitary mean. The expected value of the range conditional to the past of the process up 

to time t-1 is   

  𝐸(𝑅𝑡|𝐼𝑡) = 𝑒𝜓𝑡  

and the distribution of Rt results from the mixing of the lognormal distribution of eψt and the distribution of εt. 

The condition |β|<1 is necessary and sufficient to ensure stationarity and ergodicity for the process ψt, and hence 

for Rt.  

The theoretical first two moments and thes- are the following   

   (10)  

  ,  (11)  

   (12)  

 for all 𝑠 ≥ 1.  

Concerning the distribution of εt, any law with positive support can be a suitable candidate. In this paper we will 

use two distributions: the Weibull and the log-normal. Weibull distribution is commonly employed in duration 

analysis and was adopted by Chou (2005) in the CARR model. The justification for the use of the log-normal 

distribution arises from the result by Alizadeh et al.(2002) on the distribution of daily high and low prices, which 

appears to be approximately Gaussian. Depending on the choice of the distribution for εt, the estimated models 

will be denoted as W-SCR and L-SCR.  

As it was noted above, we restrict the first moment of the baseline range εt to be equal to one. This is necessary 

to avoid an identification problem between the expectations of εt and ψt. The location parameter of the lognormal 

distribution will be therefore set to -1/2σε
2, while the scale parameter of the Weibull will be restricted to be equal 

to Γ(1+1/γ)-1, where σε
2 and γ are the shape parameters which will be let free to vary.  

3 Estimation   

In this section we will discuss how the estimation of the SCR model can be performed either by maximum 

likelihood (ML) or by indirect inference. Concerning ML estimation, we will detail the methods that can be 

followed in order to deal with the problem of the presence of a latent variable.   



ISSN: 3065-0623    

 

Research Article 

 

 

  | ISSN: 3065-0623  Page | 4 

 

 

 
 

 Published by Keith Publication 

Columbia Journal of Entrepreneurship and 

Environmental Management 

https://keithpub.com/ | ©2023 CJEM | 

Vol: 11 N0: 03 

3.1 ML with Kalman filter and EIS  

The distribution of the baseline range 𝜀𝑡 plays an important role in deciding how to proceed in the computation 

of the likelihood function to be maximized. If 𝜀𝑡 is log-normally distributed, as in the L-SCR specification, the 

model can be trasformed by taking the logarithms on both sides of equation (8). This yields the following 

relationships   

  𝑟𝑡 = ln𝑅𝑡 = 𝜓𝑡 + ln𝜀𝑡,  (13)   

  𝜓𝑡 = 𝜔 + 𝛽𝜓𝑡−1 + 𝜎𝑢𝑡,  (14)  

that can be interpreted as the state and transition equations of a linear state-space model. This model can be easily 

estimated by Kalman filter and the resulting likelihood can be maximized by means of a numerical algorithm.  

The reliance of the Kalman filter on the normality of both error components (ln εtand ut) limits its use to the L-

SCR case only. When the distribution of εt is exponential or Weibull, the Kalman filter will not produce an 

efficient computation of the likelihood anymore. Therefore, it is necessary to resort to the numerical integration 

of the density of the latent variable to compute an exact likelihood.  

To do this, we start by denoting by R a sequence of n realizations of the range process. R has a conditional density 

of g(R|ψ,θ1), where θ1 is a parameter vector indexing the distribution and ψ a vector of latent variables of the 

same dimension of the sample R. The joint density of ψ is h(ψ|θ2),with θ2 a vector of parameters, and the 

likelihood function for R can be written as  

            (15)  the last term of the equation 

is the result of the sequential decomposition of the integrand in the product of the density of εt conditional on ψt, 

p(Rt|ψt,θ1), that in our case will be Weibull, and the density of ψt conditional on its past, q(ψt| ψt-1,θ2), which is 

normal with mean ω+βψ(t-1) and variance σ2.  

This high dimensional integral is not analytically solvable and a numerical approach is necessary. There is a very 

substantial literature on Monte Carlo integration methods, for an interesting survey in the field of stochastic 

volatility see Broto and Ruiz (2004).  

The method we will employ is a refinement of the widespread importance sampling technique, it is called efficient 

importance sampling (EIS) and was developed by Richard and Zhang (2007). As the authors point out, this 

method is particularly convenient for an accurate numerical solution of high dimensional "relatively simple" 

integrals like the ones we need to treat and has already been successfully applied to problems that are similar (see 

Liesenfeld and Richard (2003) and Bauwens and Hautsch (2006)) or nearly identical (see Bauwens and Galli 

(2009)) to ours. For a detailed presentation of the algorithm, we refer the reader to Richard and Zhang (2007). A 

description of its implementation in the contest of the SCD model, which share the same functional form with the 

model proposed in this paper is available in Bauwens and Galli (2009). In the appendix we present a brief 

summary.  
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3.2 Indirect inference   

An alternative solution for the estimation of the parameters of the SCR models can consist in indirect inference 

(for a detailed introduction see Gourieroux and Monfort (1996)), a simulation-based method that can be useful in 

estimating models for which the likelihood function is difficult to evaluate. Indirect inference relies on the 

possibility of easily simulating data from the model which is object of estimation (the estimand model). 

Simulations from the estimand are evaluated through a criterion function constructed with an approximate, or 

auxiliary, model, whose estimation can be performed easily (at least relatively to the estimand model). The 

auxiliary model does not necessarily provide an accurate description of the true process that generated the data, 

working more as a window through which to view both the actual data and the ones simulated from the estimand 

model. The objective of indirect inference is to choose the parameters of the estimand model so that they minimize 

a distance between the results of the estimation (that can consist in the parameters, the likelihood or the score) of 

the auxiliary model with the simulated data and the actual ones. A brief summary of this method is presented in 

the appendix.  

For the indirect inference estimation of the SCR model, we chose two auxiliary models: an AR(10) and an 

ARMA(1,1). Both models were estimated on the logarithm of the observed and simulated ranges. As a result of 

the estimation of the two auxiliary models we chose to use their parameters and a simple sum of their squared 

differences was employed as the distance to minimize to obtain the indirect inference estimator.  

3.3 Estimation of the latent variables   

Once estimates the parameters of the models have been obtained, it is possible to compute estimates of the latent 

variableψt. The process described by equations 13 and 14 is in the form of a linear state space model, and this 

allows to employ Bayesian updating in order to recover estimates for a prediction step, that provides a one-step-

ahead prediction of the latent variable ψt given the previous observation r(t-1)   

  (𝜓𝑡|𝑟1:𝑡−1) = (𝜓𝑡|𝜓𝑡−1)𝑝𝜃(𝜓𝑡−1|𝑟1:𝑡−1)𝑑𝜓𝑡−1,  (16)  

and for a filtering (updating) step, which provides an estimate of the value of the latent variable ψt given an 

contemporary observation rt,  

  .  (17)  

When the state space model is Gaussian in both its innovations, the Kalman filter provides simple analytic forms 

for the predicted and updated values of the latent variable. This is the case only for the L-SCR model. If instead 

we allow the baseline distribution of the range to follow a different model (like, in our case, a Weibull) the 

Gaussianity of the process is lost and we had to recur to particle filter, a Monte Carlo method for the numerical 

evaluation of non Gaussian state space models (for details see Arulampam et al. (2002).  
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3.4 Evidence from simulated processes   

Table 1 displays the sample means and standard deviations of the estimated parameters of 100 simulations of W-

SCR series. The simulated sets have sizes of 1000, 2500 and 10000 observations and the parameters used to 

generate the data are similar to the average values of the estimates computed later in this paper. The simulated 

series were estimated by indirect inference with an AR(10) and a ARMA(1,1) auxiliary model and by maximum 

EIScomputed likelihood. We also report the results of Kalman filter estimation, but only for the three parameters 

governing the dynamics of the latent variable, the only ones that would be estimated consistently by quasi 

maximum likelihood.   

1000           

           

 DGP     0.0000  0.9750  0.1000  3.5000  

            

Indirectinf. 

AR(10)   

Mean   0.0005    0.9767    0.0931    

3.4943   

  Stddev  0.0029  0.0076  0.0117  0.1246  

Indirectinf.  

ARMA(1,1)   

Mean   0.0003    0.9754    0.0918    

3.6755   

  Stddev  0.0029  0.0074  0.0128  0.2906  

 ML-EIS   Mean   0.0017    0.9763    0.0955    

3.4135   

  Stddev  0.0035  0.0089  0.0094  0.1316  

Kalmanfilter  Mean   0.0031    0.9693    0.1945     

  Stddev  0.0039  0.0095  0.0122    

            

2500           

           

 DGP     0.0000  0.9750  0.1000  3.5000  

            

Indirectinf. 

AR(10)   

Mean   0.0002    0.9753    0.1001    

3.5508  

  Stddev  0.0017  0.0056  0.0076  0.0803  

Indirectinf.  

ARMA(1,1)   

Mean   0.0001    0.9746    0.0966    

3.7535   
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  Stddev  0.0017  0.0053  0.0078  0.2125  

 ML-EIS   Mean   0.0012    0.9789    0.0915    

3.3570   

  Stddev  0.0023  0.0066  0.0076  0.1174  

Kalmanfilter  Mean   0.0033    0.9724    0.1949     

  Stddev  0.0021  0.0059  0.0067    

            

10000           

           

 DGP     0.0000  0.9750  0.1000  3.5000  

            

Indirectinf. 

AR(10)   

Mean   0.0003    0.9756    0.0992    

3.5214   

  Stddev  0.0010  0.0033  0.0039  0.0401  

Indirectinf.  

ARMA(1,1)   

Mean   0.0001    0.9758    0.0936    

3.7319   

  Stddev  0.0009  0.0033  0.0052  0.1603  

 ML-EIS   Mean   -0.0006    0.9761    0.0962    

3.4276   

  Stddev  0.0012  0.0034  0.0057  0.1038  

Kalmanfilter  Mean   0.0028    0.9742    0.1957     

  Stddev  0.0011  0.0031  0.0035    

            

  

Table 1: Sampling means and standard deviations of 100 estimates of the W-SCR model parameters for simulated 

series of 1000, 2500 and 10000 observations. The initial parameters of the four estimation methods were chosen 

to be equal to the simulation parameters plus a zero mean Gaussian error with standard deviation set at 0.05 for 

ω and β, at 0.01 for σ and at 0.5 for γ.   

If any jittered starting value was beyond parameter constraints, a new sample of values was drawn. The 

parameters ω and β are estimated in a satisfactory way by all models even at the limited sample size of 1000 

observations. Sample means and standard deviations are strictly comparable. Estimators seem to converge, in fact 

as the sample size increases; averages approach the simulated parameters and standard deviation become tighter. 

σ, the standard deviation of the innovations of the latent variable, seems more problematic to estimate. Indirect 
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inference and ML-EIS seem to underestimate in a similar way, while the Kalman filter grossly overshoots (this 

last result is consistent with the Monte Carlo results in Bauwens and Galli (2009) for SCD models). Finally 

concerning γ the shape parameter of the Weibull baseline, it seems that indirect inference with an ARMA(1,1) 

auxiliary model has a slight loss of efficiency compared with ML-EIS and AR(10)-based indirect inference.   

4 Empirical analysis  

4.1 The data  

We carried out the empirical analysis by considering series of ten years for all Standard and Poor’s 500 

components ending at the date of February 15, 2014. Data on daily price maxima and minima were downloaded 

from Yahoo! finance via the tseries package in R. The resulting series of ranges were normalized to have a unit 

mean in order to speed up computation by reducing the search for the intercept in the conditional range function 

and to have more comparable estimates and forecasts. Out of the original 500 series, 22 of them were composed 

by less than 1000 observations and were discarded. This choice was somewhat arbitrary, but convergence issues 

for the numerical algorithms for very limited sample sizes required to set a threshold. Table 2 provides some 

descriptive statistics of the range series for the remaining 478 stocks. Not all series have a full 10 years length of 

2517 observations, but the average sample size after pruning our database of particularly short sets is quite close 

to the maximum value. It can be noted too that data have a rather low degree of overdispersion (computed as the 

ratio of sample mean and sample standard deviation), yet maxima tend to be several standard deviations away 

from the mean. Even visual inspection of some charts revealed that this could be due to an issue of outliers rather 

than to a particularly fat tail in the baseline distribution. Whether these outliers derive from quirks in recording 

or from exceptional conditions in the markets is difficult to tell. The use of an outlier detection and removal 

algorithm, like for instance the one device for durations by Chiang and Wang (2012), could be an interesting 

extension to this analysis and we leave it for further research. Average skewness and kurtosis indicate a strong 

departure from normality due to the presence of a heavy right tail. Statistics on autocorrelations are reported in 

the first column of the upper part of table 5 and show the presence of a marked degree of memory. These 

descriptive statistics are similar to the results obtained by Chou (2005). 

  mean   stddeviation    maximum    minimum   

  

observations   

  

 2469.176    

    

 201.072     

  

2517      1039    

means    1     0      1      1    

medians    0.808     0.056      0.888      0.571    

stddeviations    0.720     0.158      1.489      0.499    

minima    0.177     0.046      0.275    0.001    

maxima    9.586     5.294      45.431      4.303    
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skewnesses    3.745     2.414      25.621      1.758    

kurtoses    34.378     91.415     981.904     5.442    

          

Table 2: Descriptive statistics of the 478 stocks used for the empirical analysis.  

4.2 Estimation results  

 The models used in the empirical analysis were a CARR(1,1) with a Weibull conditional range distribution  

(W-CARR), an SCR with a lognormal distribution (L-SCR) and an SCR with a Weibull conditional distribution 

(WSCR).  All models were specified with only one lag of the conditional range (and the range for the CARR 

model). The first model was estimated by conditional maximum likelihood. In the second and the third model, 

likelihood was computed by respectively Kalman filter and EIS. The W-SCR model were also estimated by 

indirect inference with an AR(10) and an ARMA(1,1) as auxiliary models. Estimation times runned from less 

than a second for the CARR model to an average of half a minute for the L-SCR model and the W-SCR with an 

AR(10) auxiliary model and an average of 3-4 minutes for the W-SCR with ML-EIS and ARMA(1,1) indirect 

inference.   

Table 3 reports sample means and standard deviations of the estimated parameters. All the estimators of the SCR 

model yield similar values for ω and for β. The high level of persistence in the data is reflected by the average 

estimate of β, at a value close to one.  

In the CARR case a similar high persistence emerges from the sum of the estimated values of α and β, which is 

close to one as well. Estimates for σ and γ seem to be sensitive to the method employed and seem to be negatively 

correlated. Even if the CARR model yields markedly lower estimates for γ than the SCR model, the parameter is 

always larger than 2 on average. This result is similar to the value obtained in Chou (2005) for the S&P500 index 

and suggest that an exponential distribution (that could be obtained by setting to one the γ parameter of the 

Weibull) would not be a suitable model for the baseline range. 

              𝜎𝜀  

                

W-CARR   mean   0.0405    0.2069    0.7509      2.2673     

  stddev  0.0334  0.0642  0.0865    0.2378    

               

L-SCR   mean   -0.0002      0.9782    0.1695       

0.3546  

  stddev  0.0014    0.0184  0.0252    0.0238  

               

W-SCR   mean   -0.0029      0.9784    0.0725    3.9483     
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ind. inf. 

ARMA(1,1)   

stddev  0.0028    0.0185  0.0282  0.3637    

               

W-SCR   mean   -0.0026      0.9619    0.1033    3.7991     

ind. inf. AR(10)   stddev  0.0018    0.0290  0.0308  0.3564    

               

W-SCR   mean   0.0085      0.9311    0.1495    3.2266     

ML-EIS   stddev  0.0111    0.0472  0.0386  0.2266    

                

Table 3: Sample means and standard deviations of estimated parameters.  

4.3 Analysis of residuals  

For the SCR model, we can define the residual corresponding to the innovation 𝜀𝑡 as   

            (18)  

where 𝜓 𝑡 are the estimates of the latent variable provided either by the Kalman or the particle filter conditional 

on the observation of the range at time t (the so called filtered or updated estimates). In the CARR case, the 

residual is provided by the the ratio 𝑅𝑡/Ψ 𝑡where Ψ 𝑡 is recursively computed by replacing the values of the 

estimated parameters and of 𝑅𝑡−1 and Ψ𝑡−1 in equation 3. For each stock in the sample we computed the sample 

correlogram of   and checked if the strong autocorrelation present in the data was removed by the estimated 

dynamic part of the models we used. Results are detailed in table 4. Though none of the models seems to 

completely explain away the autocorrelation present in the data, residuals display a much limited serial 

dependence with respect to the samples used for estimation. The first autocorrelation is on average positive and 

quite high, followed by smaller negative values for the SCR models, while in the CARR case it drops close to 

zero after the first lag. At higher lags (after 10) SCR residuals’ autocorrelations tend to drop to small values while 

CARR’s ones show a tendency to increase. 

4.4 Fit of moments and autocorrelations  

A comparison of the ability to fit the moments and autocorrelation structure of CARR and SCR models is 

presented in table 5. Moments and autocorrelations of the data were compared with implicit moments and 

autocorrelations computed by evaluating for each series formulae 4 to 7 and 10 to 12 with the values of estimated 

parameters. Except for the W-SCR estimated with AR(10) indirect inference, all models seem to slightly 

underestimate the average of the data.  

  CARR    L-SCR    W-SCR    W-

SCR   

  W-

SCR  
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           ind.inf.   

ind.inf.   

  ML-

EIS  

 

           ARMA(1,1)   

AR(10)   

     

  mean  Stdev  mean  stdev  mean  stdev  mean  stdev  mean  stdev  

                      

ACF(1)’s    0.067   0.040   0.077   0.026   0.096   0.044   0.054   0.036   0.020   0.041  

ACF(2)’s    0.003   0.034   0.000   0.026   0.017   0.028   -0.015   0.021   -

0.031   

0.028  

ACF(3)’s    -

0.011   

0.036   -

0.022   

0.026   -

0.009   

0.027   -0.030   0.022   -

0.033   

0.025  

ACF(4)’s    -

0.010   

0.035   -

0.026   

0.024   -

0.016   

0.025   -0.028   0.021   -

0.022   

0.025  

ACF(5)’s    0.001   0.036   -

0.018   

0.026   -

0.012   

0.024   -0.017   0.021   -

0.004   

0.024  

ACF(6)’s    0.001   0.035   -

0.019   

0.023   -

0.014   

0.025   -0.014   0.022   0.000   0.025  

ACF(7)’s    0.001   0.033   -

0.019   

0.023   -

0.015   

0.026   -0.012   0.023   0.001   0.025  

ACF(8)’s    0.003   0.033   -

0.017   

0.023   -

0.014   

0.025   -0.009   0.023   0.005   0.024  

ACF(9)’s    0.013   0.033   -

0.009   

0.022   -

0.008   

0.022   -0.001   0.021   0.014   0.023  

ACF(10)’s    0.027   0.031   0.004   0.022   0.006   0.021   0.014   0.021   0.022   0.023  

ACF(20)’s    0.026   0.030   0.003   0.021   0.007   0.022   0.014   0.022   0.020   0.020  

ACF(30)’s    0.023   0.028   0.002   0.020   0.004   0.021   0.009   0.021   0.013   0.020  

ACF(40)’s    0.022   0.027   0.003   0.020   0.005   0.021   0.008   0.022   0.010   0.020  

ACF(50)’s    0.015   0.027   -

0.003   

0.020   -

0.002   

0.019   0.004   0.020   0.006   0.019  

 Table 4:  Sample means and standard deviations of the autocorrelations of the residuals 𝜀   

The mean square errors of the first moments, computed by taking the average of the squares of differences 

between the empirical first moment and the implicit one computed on estimated parameters, show that the AR(10) 

W-SCR and the L-SCR seem to evaluate most precisely the mean of the process. Concerning the second moment, 
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once again all models seem to yield estimates that are smaller on average than the sample values computed from 

the data. Here CARR and again AR(10) W-SCR seem to be the specifications with a lower quadratic loss. Coming 

to autocorrelations, W-SCD seems to reconstruct the serial dependency of the data with a smaller square loss than 

LSCD, which tends to overestimate the lower order autocorrelations and underestimate the higher order ones. 

CARR too has a higher value of MSE at all lags, as it systematically tends to underestimate the serial dependence 

in the data. It must be noted though that no model seems able to accont fully for the apparent long memory in the 

data and at high order of lags all autocorrelations seem to be underestimated.  

4.5 Predictive accuracy  

The predictive accuracy of the different models was compared by an insample one-step-ahead analysis. First the 

full sample was used to estimate the parameters of the models. Then we predicted every observation at 

timet=2,...,n using estimated parameters and observations at time t-1=1,...,n-1.An outsample analysis was not 

performed because splitting the sample in two parts in an already quite short set of data woud either lead to more 

jittery parameter estimates or to too few forecasts. The forecasting accuracy of each estimator for each series was 

measured by the mean square (prediction) error that is the average of the squared difference between predicted 

and observed values. The significance of the difference between forecast errors of couples of estimators was 

verified by the Diebold and Mariano (2002) test with a bilateral alternative and a quadratic loss function. 

Predictions are considered different if the Bonferroni corrected -value is below 5%. Table 6 displays the main 

results for the estimation of the three models. It appears that though MSE’s are very similar, CARR tends to 

predict marginally better than SCR regardless of the method of estimation. The substantial homogeneity in the 

performance of L-SCR and W-SCR models does not come as a surprise, as the most relevant parameters for 

forecasting are estimated consistently by Kalman filter. Concerning the slight forecasting edge of the CARR 

model, this could be due to the presence of two lagged variables in the CARR expression for conditional range. 

The SCR could be augmented by including the past observed range as a further determinant of the dynamics of 

its latent component and it would be interesting to evaluate if its forecasting ability improves. 

  data     CARR    L-SCR    W-SCR    W-SCR    W-SCR  

               ind.inf.   ind.inf.    ML-EIS  

               ARMA(1,1)   AR(10)       

  mean  stdev  mean  stdev  mean  stdev  mean  stdev  mean  stdev  mean  stdev  

                          

 1𝑠𝑡mom   

1.000   

0.000   

0.954   

0..060   

0.933   

0.111   

0.953   

0.111   

1.005   

0.066   

0.944   

0.121  

 2𝑛𝑑mom   

1.543   

0.278   

1.313   

0.360   

1.024   

0.086   

1.090   

0.204   

1.296   

0.103   

1.127   

0.191   
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ACF(1)’s    

0.601   

0.102   

0.502   

0.156   

0.697   

0.091   

0.595   

0.087   

0.621   

0.064   

0.531   

0.059  

ACF(2)’s    

0.550   

0.110   

0.483   

0.159   

0.682   

0.092   

0.581   

0.087   

0.596   

0.067   

0.473   

0.065  

ACF(3)’s    

0.525   

0.111   

0.465   

0.163   

0.668   

0.095   

0.569   

0.089   

0.573   

0.074   

0.462   

0.072  

ACF(4)’s    

0.513   

0.110   

0.447   

0.167   

0.654   

0.099   

0.556   

0.092   

0.551   

0.080   

0.472   

0.087  

ACF(5)’s    

0.503   

0.111   

0.431   

0.171   

0.640   

0.102   

0.544   

0.093   

0.530   

0.086   

0.484   

0.098  

ACF(6)’s    

0.494   

0.111   

0.416   

0.175   

0.627   

0.104   

0.533   

0.095   

0.511   

0.090   

0.493   

0.107  

ACF(7)’s    

0.482   

0.113   

0.402   

0.179   

0.615   

0.107   

0.522   

0.097   

0.492   

0.094   

0.496   

0.114  

ACF(8)’s    

0.475   

0.112   

0.389   

0.182   

0.602   

0.109   

0.511   

0.098   

0.474   

0.098   

0.506   

0.120  

ACF(9)’s    

0.476   

0.113   

0.376   

0.185   

0.590   

0.111   

0.500   

0.099   

0.457   

0.101   

0.530   

0.124  

ACF(10)’s    

0.468   

0.110   

0.364   

0.188   

0.578   

0.113   

0.490   

0.101   

0.441   

0.104   

0.536   

0.127  

ACF(20)’s    

0.414   

0.107   

0.271   

0.207   

0.476   

0.128   

0.400   

0.108   

0.314   

0.116   

0.491   

0.128  

ACF(30)’s    

0.380   

0.105   

0.212   

0.215   

0.394   

0.134   

0.330   

0.110   

0.229   

0.111   

0.416   

0.122  

ACF(40)’s    

0.345   

0.108   

0.172   

0.218   

0.329   

0.134   

0.273   

0.108   

0.171   

0.101   

0.357   

0.129  

ACF(50)’s    

0.307   

0.104   

0.143   

0.218   

0.276   

0.131   

0.228   

0.103   

0.130   

0.090   

0.243   

0.117  

                          

      MSE    MSE    MSE    MSE    MSE  

1

 𝑠𝑡mo

m  

    0.006    0.002    0.007    0.000    0.009  

2𝑛𝑑mom      0.159    0.395    0.315    0.116    0.301  

ACF(1)’s       0.031    0.013    0.005    0.005    0.010  

ACF(2)’s       0.026    0.021    0.006    0.007    0.010  



ISSN: 3065-0623    

 

Research Article 

 

 

  | ISSN: 3065-0623  Page | 14 

 

 

 
 

 Published by Keith Publication 

Columbia Journal of Entrepreneurship and 

Environmental Management 

https://keithpub.com/ | ©2023 CJEM | 

Vol: 11 N0: 03 

ACF(3)’s       0.025    0.024    0.007    0.007    0.007  

ACF(4)’s       0.026    0.023    0.007    0.006    0.004  

ACF(5)’s       0.028    0.023    0.007    0.005    0.003  

ACF(6)’s       0.029    0.021    0.006    0.005    0.003  

ACF(7)’s       0.029    0.021    0.006    0.005    0.003  

ACF(8)’s       0.032    0.020    0.006    0.005    0.004  

ACF(9)’s       0.036    0.017    0.005    0.006    0.006  

ACF(10)’s       0.037    0.016    0.005    0.006    0.008  

ACF(20)’s       0.052    0.008    0.004    0.017    0.013  

ACF(30)’s       0.065    0.005    0.007    0.030    0.017  

ACF(40)’s       0.068    0.004    0.009    0.038    0.019  

ACF(50)’s       0.068    0.005    0.010    0.038    0.021  

               

Table 5: Upper table: sample means and standard deviations of sample moments and autocorrelations of the 478 

S&P 500 stocks with more than 1000 observations and theoretical moments and autocorrelations computed from 

estimated parameters. Lower table: averages of the squared differences between implicit theoretical moments and 

sample moments computed for each stock.   

  

When the significance of pairs of forecasts is tested, it turns out that only about in one stock in fifteen the  

CARR and the W-SCR model forecast in a significantly different way. The proportion reduces of a half when the 

LSCR is concerned. If finally we restrict our sample to significantly different forecasts only, we see that the gain 

of  

CARR in terms of MSE is slightly reduced in the case of the W-SCR while it remains substantially the same for 

the LSCR. We conclude by remarking that statistics on the comparisons between W-SCR and L-SCR, that are 

not reported in table 6, display a substantial similarity between the forecasts of the two models (for example, only 

less than the 1% of the forecasts can be considered different after testing).  

  

  mean  sd  min  max    

MSE W-CARR    0.2738    0.1288    0.1564    1.3703    

MSE L-SCR    0.2759    0.1136    0.1632    1.0583   

MSE W-SCR ind.inf. AR(10)   0.2758    0.1155    0.1597    1.0745   

MSE W-SCR ind.inf. 

ARMA(1,1)   

 0.2763    0.1189    0.1601    1.1181   

MSE W-SCR ML-EIS   0.2756    0.1171    0.1613    1.0690   
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significantly             

L-SCR and W-CARR           3.8%   

significantly             

W-SCR AR(10) and W-CARR           7.9%   

significantly             

W-SCR ARMA(1,1) and W-

CARR   

        7.9%   

significantly             

W-SCR ML-EIS and W-CARR           7.8%   

Table 6: MSE comparison and Diebold and Mariano (2002) results for insample one-step-ahead forecasts. 

5 Conclusion  

The SCR is a simple model for the dynamics of financial range. Its estimation is feasible and can be achieved 

with several techniques, a few of them have been proposed here. In an empirical analysis on a large subset of the 

stocks composing S&P 500, SCR seemed to improve on the CARR model in reconstructing the autocorrelation 

structure of the data and was only slightly less efficient in forecasting. Extensions of the models are possible and 

could be explored in future research. Concerning the latent variable, a long memory version, a version with a 

more complex process than an AR(1) and a departure from normality of the innovation in the latent variable 

process could be of interest. Concerning the baseline range distribution, a mixture distribution could be useful in 

accounting for the consequencies of heterogeneity in the information in the market.  
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