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Abstract

In this paper we introduce a latent variable based model for the dynamics of financial range, the stochastic
conditional range (SCR). We propose to estimate its parameters by Kalman filter, indirect inference and simulated
maximum likelihood depending on the hypotheses on the distributional form of the innovations. The model is
applied to a large subset of the S&P 500 components. A comparison of its fitting and forecasting abilities with the
conditional autoregressive range (CARR) model shows that the new approach can provide a competitive alternative.
Keywords: Volatility, range, importance sampling, indirect inference.

1. Introduction

It is a well-known phenomenon that financial time series exhibit volatility clustering. A very large literature on
the dynamics of returns has developed since the seminal contributions of Engle (1982), Bollerslev (1986) and
Taylor (2008) on GARCH and stochastic volatility. Most of this literature concentrates on the dynamics of the
differences of closing prices of the reference period as a means of describing the subtle concept of volatility.
Parkinson (1980) suggested that the use of extreme price values can provide a superior estimate of volatility than
returns. The potential advantages of using price range as an alternative were also pointed out by Alizadeh et al.
(2002), who claimed to “show theoretically, numerically, and empirically that range-based volatility proxies are
not only highly efficient, but also approximately Gaussian and robust to microstructure noise”, while Brandt and
Diebold (2006) noticed that range “is a highly efficient volatility proxy, distilling volatility information from the
entire intraday price path, in contrast to volatility proxies based on the daily return, such as the daily squared
return, which use only the opening and closing prices”.

Chou (2005) proposed a dynamic model, the conditional autoregressive range (CARR) for the evolution of
high/low range who mimics the structure of the ACD model of Engle and Russell (1998) for inter trade durations.
This line of modelling has desirable statistical and empirical properties and the search for its refinements and
extensions can draw from the wide body of ACD literature. In this article we introduce a latent variable based
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variant of the CARR model: the stochastic conditional range (SCR) model. In this new formulation, the dynamics
of the ranges are driven by a latent variable which is supposed to capture the unobserved information flow that
reaches the market. The specification of the model is multiplicative, like in the CARR model, but its main
difference is that the SCR has two stochastic innovations, one affecting the observed range and the other the latent
variable. The model can be seen as characterized by a mixture of distributions, or, in following Cox (1981), as
parameter-driven. This specification also shares most of the statistical characteristics of the stochastic conditional
duration (SCD) model of Bauwens and Veredas (2004). In section 2, we will present the model and discuss some
of its properties.

In section 3 we propose three methods for estimation: maximum likelihood based on Kalman filter or on
numerical integration of the latent variable and indirect inference. A comparison on the fitting and predictive
capabilities of CARR and SCR models is carried out for a large sample of stocks in section 4. Results show that
the SCR provides more reliable estimates of the autocorrelations of the data process, while in terms of forecasting
accuracy it is comparable to CARR. Section 5 concludes.

2 The model

Let p- the price of a financial asset sampled at frequent (e.g.minutes or seconds) time intervalst, and P-=

(p-) its logarithm. We define as range the difference R: = m(P:) — min(P:), where tindicates a coarser set of
time intervals (e.g. days, weeks) suchthat r = ¢ — 1,£ — 1 + i t—1+ % by (1)

Wheren is the number of frequent intervals contained in one of the coarser intervals indexed by t.
The conditional autoregressive range CARR(1,1), introduced by Chou (2005), is defined by the following
equations:
Rt = Ytet 2
Yt=w+ aRt-1+ ¥t-1 (3)
with
w>0, a>0, >0,

where the baseline range (the error) & has a distribution with density function p(e|), which has positive support
and unit mean. It denotes the information set at time t-1, and it includes the past values of Rt and yt. Computing
moments and autocorrelation for the CARR(1,1) model is easy and one can obtain the following simple
expression:
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ER) =10 if@+p <1 (4
1+02(1-p%-2a
ERY) = ER) T giary )
_ a(1-p*—ap)
PL= g1 50,0 (6)

pn=(a+p)1 (n>1). (7

We introduce the stochastic conditional range (SCR) as the process described as follows:

Ri=eVte: (8)

Y= w + P11+ auy, (9)
where uily has an iid standard normal distribution and &It has, like in the case of CARR, a distribution defined
on the positive axis with unitary mean. The expected value of the range conditional to the past of the process up
to time t-1 is

E(Rt|lt) = evt
and the distribution of R; results from the mixing of the lognormal distribution of € and the distribution of &t.
The condition |f|<1 is necessary and sufficient to ensure stationarity and ergodicity for the process w, and hence
for R:.

The theoretical first two moments and thes-th autocorrelation of R, are the following
2

E(R) = E(e)E(e’) = e=r 157, (10)

2 —
E(RY) = E(R)? (Q—fe_ﬂ’ 1) +ER), (11)
g2 s
iy
1-g2 _
Ps = e—agl— (12)
E(e?)emfl

forall s> 1.

Concerning the distribution of &, any law with positive support can be a suitable candidate. In this paper we will
use two distributions: the Weibull and the log-normal. Weibull distribution is commonly employed in duration
analysis and was adopted by Chou (2005) in the CARR model. The justification for the use of the log-normal
distribution arises from the result by Alizadeh et al.(2002) on the distribution of daily high and low prices, which
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appears to be approximately Gaussian. Depending on the choice of the distribution for &, the estimated models
will be denoted as W-SCR and L-SCR.
As it was noted above, we restrict the first moment of the baseline range & to be equal to one. This is necessary
to avoid an identification problem between the expectations of erand yt. The location parameter of the lognormal
distribution will be therefore set to -1/24.2, while the scale parameter of the Weibull will be restricted to be equal
to I'(1+1/y), where ¢, and y are the shape parameters which will be let free to vary.
3 Estimation
In this section we will discuss how the estimation of the SCR model can be performed either by maximum
likelihood (ML) or by indirect inference. Concerning ML estimation, we will detail the methods that can be
followed in order to deal with the problem of the presence of a latent variable.
3.1 ML with Kalman filter and EIS
The distribution of the baseline range : plays an important role in deciding how to proceed in the computation
of the likelihood function to be maximized. If & is log-normally distributed, as in the L-SCR specification, the
model can be transformed by taking the logarithms on both sides of equation (8). This yields the following
relationships

re=INRe= e+ Inge,  (13)

Yr=w + fPe-1+ ogue, (14)
that can be interpreted as the state and transition equations of a linear state-space model. This model can be easily
estimated by Kalman filter and the resulting likelihood can be maximized by means of a numerical algorithm.
The reliance of the Kalman filter on the normality of both error components (In eand ut) limits its use to the L-
SCR case only. When the distribution of & is exponential or Weibull, the Kalman filter will not produce an
efficient computation of the likelihood anymore. Therefore, it is necessary to resort to the numerical integration
of the density of the latent variable to compute an exact likelihood.
To do this, we start by denoting by R a sequence of n realizations of the range process. R has a conditional density
of g(R|w,61), where 61 is a parameter vector indexing the distribution and y a vector of latent variables of the
same dimension of the sample R. The joint density of y is i(y|602),with 6> a vector of parameters, and the
likelihood function for R can be written as
L(6,R) = [ g(RIY, 0:)h(102)d = [ TTF=1 P(Re e, 0)a (el ¥e—1,02)dip, (15) the last term of the equation
is the result of the sequential decomposition of the integrand in the product of the density of & conditional on y,
P(Rt|y,601), that in our case will be Weibull, and the density of y: conditional on its past, g(yt| wt1,62), which is
normal with mean w-+pfy 1) and variance o°.
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This high dimensional integral is not analytically solvable and a numerical approach is necessary. There is a very
substantial literature on Monte Carlo integration methods, for an interesting survey in the field of stochastic
volatility see Broto and Ruiz (2004).

The method we will employ is a refinement of the widespread importance sampling technique, it is called efficient
importance sampling (EIS) and was developed by Richard and Zhang (2007). As the authors point out, this
method is particularly convenient for an accurate numerical solution of high dimensional "relatively simple”
integrals like the ones we need to treat and has already been successfully applied to problems that are similar (see
Liesenfeld and Richard (2003) and Bauwens and Hautsch (2006)) or nearly identical (see Bauwens and Galli
(2009)) to ours. For a detailed presentation of the algorithm, we refer the reader to Richard and Zhang (2007). A
description of its implementation in the contest of the SCD model, which share the same functional form with the
model proposed in this paper is available in Bauwens and Galli (2009). In the appendix we present a brief
summary.

3.2 Indirect inference

An alternative solution for the estimation of the parameters of the SCR models can consist in indirect inference
(for a detailed introduction see Gourieroux and Monfort (1996)), a simulation-based method that can be useful in
estimating models for which the likelihood function is difficult to evaluate. Indirect inference relies on the
possibility of easily simulating data from the model which is object of estimation (the estimand model).
Simulations from the estimand are evaluated through a criterion function constructed with an approximate, or
auxiliary, model, whose estimation can be performed easily (at least relatively to the estimand model). The
auxiliary model does not necessarily provide an accurate description of the true process that generated the data,
working more as a window through which to view both the actual data and the ones simulated from the estimand
model. The objective of indirect inference is to choose the parameters of the estimand model so that they minimize
a distance between the results of the estimation (that can consist in the parameters, the likelihood or the score) of
the auxiliary model with the simulated data and the actual ones. A brief summary of this method is presented in
the appendix.

For the indirect inference estimation of the SCR model, we chose two auxiliary models: an AR(10) and an
ARMA(1,1). Both models were estimated on the logarithm of the observed and simulated ranges. As a result of
the estimation of the two auxiliary models we chose to use their parameters and a simple sum of their squared
differences was employed as the distance to minimize to obtain the indirect inference estimator.
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3.3 Estimation of the latent variables
Once estimates the parameters of the models have been obtained, it is possible to compute estimates of the latent
variableys. The process described by equations 13 and 14 is in the form of a linear state space model, and this
allows to employ Bayesian updating in order to recover estimates for a prediction step, that provides a one-step-
ahead prediction of the latent variable y« given the previous observation r.1

(We|r1:t-1) = po(Pe[pe—1)po(Pe—1|ri:t-1)dy«—1,  (16)
and for a filtering (updating) step, which provides an estimate of the value of the latent variable y: given an

Contemporary observation I,
— Po (el )pe (elrie—1)
Pe (‘prlrl:t) N Tpoelore (Welrye—1)d

When the state space model is Gaussian in both its innovations, the Kalman filter provides simple analytic forms
for the predicted and updated values of the latent variable. This is the case only for the L-SCR model. If instead
we allow the baseline distribution of the range to follow a different model (like, in our case, a Weibull) the
Gaussianity of the process is lost and we had to recur to particle filter, a Monte Carlo method for the numerical
evaluation of non-Gaussian state space models (for details see Arulampam et al. (2002).

3.4 Evidence from simulated processes

Table 1 displays the sample means and standard deviations of the estimated parameters of 100 simulations of W-
SCR series. The simulated sets have sizes of 1000, 2500 and 10000 observations and the parameters used to
generate the data are similar to the average values of the estimates computed later in this paper. The simulated
series were estimated by indirect inference with an AR(10) and a ARMA(1,1) auxiliary model and by maximum
EIScomputed likelihood. We also report the results of Kalman filter estimation, but only for the three parameters
governing the dynamics of the latent variable, the only ones that would be estimated consistently by quasi
maximum likelihood.

. (17)

1000 |
w ‘ B o Y
DGP 0.0000 0.9750 0.1000 3.5000
Indirectinf. Mean 0.0005 0.9767 0.0931
AR(10) 3.4943
Stddev 0.0029 0.0076 0.0117 0.1246
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Indirectinf. Mean 0.0003 0.9754 0.0918
ARMA(1,1) 3.6755
Stddev 0.0029 0.0074 0.0128 0.2906
ML-EIS Mean 0.0017 0.9763 0.0955
3.4135
Stddev 0.0035 0.0089 0.0094 0.1316
Kalmanfilter Mean 0.0031 0.9693 0.1945
Stddev 0.0039 0.0095 0.0122
2500
w ‘ B g )4
DGP 0.0000 0.9750 0.1000 3.5000
Indirectinf. Mean 0.0002 0.9753 0.1001
AR(10) 3.56508
Stddev 0.0017 0.0056 0.0076 0.0803
Indirectinf. Mean 0.0001 0.9746 0.0966
ARMA(1,1) 3.7535
Stddev 0.0017 0.0053 0.0078 0.2125
ML-EIS Mean 0.0012 0.9789 0.0915
3.3570
Stddev 0.0023 0.0066 0.0076 0.1174
Kalmanfilter Mean 0.0033 0.9724 0.1949
Stddev 0.0021 0.0059 0.0067
10000
w ‘ B a Y
DGP 0.0000 0.9750 0.1000 3.5000
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Indirectinf. Mean 0.0003 0.9756 0.0992
AR(10) 3.5214
Stddev 0.0010 0.0033 0.0039 0.0401

Indirectinf. Mean 0.0001 0.9758 0.0936
ARMA(1,1) 3.7319
Stddev 0.0009 0.0033 0.0052 0.1603

ML-EIS Mean -0.0006 0.9761 0.0962
3.4276
Stddev 0.0012 0.0034 0.0057 0.1038

Kalmanfilter Mean 0.0028 0.9742 0.1957

Stddev 0.0011 0.0031 0.0035

Table 1: Sampling means and standard deviations of 100 estimates of the W-SCR model parameters for simulated
series of 1000, 2500 and 10000 observations. The initial parameters of the four estimation methods were chosen
to be equal to the simulation parameters plus a zero mean Gaussian error with standard deviation set at 0.05 for
o and g, at 0.01 for ¢ and at 0.5 for y.

If any jittered starting value was beyond parameter constraints, a new sample of values was drawn. The
parameters w and S are estimated in a satisfactory way by all models even at the limited sample size of 1000
observations. Sample means and standard deviations are strictly comparable. Estimators seem to converge, in fact
as the sample size increases; averages approach the simulated parameters and standard deviation become tighter.
o, the standard deviation of the innovations of the latent variable, seems more problematic to estimate. Indirect
inference and ML-EIS seem to underestimate in a similar way, while the Kalman filter grossly overshoots (this
last result is consistent with the Monte Carlo results in Bauwens and Galli (2009) for SCD models). Finally
concerning y the shape parameter of the Weibull baseline, it seems that indirect inference with an ARMA(1,1)
auxiliary model has a slight loss of efficiency compared with ML-EIS and AR(10)-based indirect inference.

4 Empirical analysis

4.1 The data

We carried out the empirical analysis by considering series of ten years for all Standard and Poor’s 500
components ending at the date of February 15, 2014. Data on daily price maxima and minima were downloaded
from Yahoo! finance via the tseries package in R. The resulting series of ranges were normalized to have a unit
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mean in order to speed up computation by reducing the search for the intercept in the conditional range function
and to have more comparable estimates and forecasts. Out of the original 500 series, 22 of them were composed
by less than 1000 observations and were discarded. This choice was somewhat arbitrary, but convergence issues
for the numerical algorithms for very limited sample sizes required to set a threshold. Table 2 provides some
descriptive statistics of the range series for the remaining 478 stocks. Not all series have a full 10 years length of
2517 observations, but the average sample size after pruning our database of particularly short sets is quite close
to the maximum value. It can be noted too that data have a rather low degree of overdispersion (computed as the
ratio of sample mean and sample standard deviation), yet maxima tend to be several standard deviations away
from the mean. Even visual inspection of some charts revealed that this could be due to an issue of outliers rather
than to a particularly fat tail in the baseline distribution. Whether these outliers derive from quirks in recording
or from exceptional conditions in the markets is difficult to tell. The use of an outlier detection and removal
algorithm, like for instance the one deviced for durations by Chiang and Wang (2012), could be an interesting
extension to this analysis and we leave it for further research. Average skewness and kurtosis indicate a strong
departure from normality due to the presence of a heavy right tail. Statistics on autocorrelations are reported in
the first column of the upper part of table 5 and show the presence of a marked degree of memory. These
descriptive statistics are similar to the results obtained by Chou (2005).

mean stddeviation ~ maximum minimum
observations  2469.176 201.072 2517 1039
means 1 0 1 1
medians 0.808 0.056 0.888 0.571
stddeviations  0.720 0.158 1.489 0.499
minima 0.177 0.046 0.275 <0.001
maxima 9.586 5.294 45.431 4.303
skewnesses 3.745 2.414 25.621 1.758
kurtoses 34.378 91.415 981.904 5.442

Table 2: Descriptive statistics of the 478 stocks used for the empirical analysis.
4.2 Estimation results
The models used in the empirical analysis were a CARR(1,1) with a Weibull conditional range distribution
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(W-CARR), an SCR with a lognormal distribution (L-SCR) and an SCR with a Weibull conditional distribution
(WSCR). All models were specified with only one lag of the conditional range (and the range for the CARR
model). The first model was estimated by conditional maximum likelihood. In the second and the third model,
likelihood was computed by respectively Kalman filter and EIS. The W-SCR model were also estimated by
indirect inference with an AR(10) and an ARMA(1,1) as auxiliary models. Estimation times runned from less
than a second for the CARR model to an average of half a minute for the L-SCR model and the W-SCR with an
AR(10) auxiliary model and an average of 3-4 minutes for the W-SCR with ML-EIS and ARMA(1,1) indirect
inference.

Table 3 reports sample means and standard deviations of the estimated parameters. All the estimators of the SCR
model yield similar values for @ and for g. The high level of persistence in the data is reflected by the average
estimate of S, at a value close to one.

In the CARR case a similar high persistence emerges from the sum of the estimated values of « and 8, which is
close to one as well.Estimates for ¢ and y seem to be sensitive to the method employed and seem to be negatively
correlated. Even if the CARR model yields markedly lower estimates for y than the SCR model, the parameter is
always larger than 2 on average. This result is similar to the value obtained in Chou (2005) for the S&P500 index
and suggest that an exponential distribution (that could be obtained by setting to one the y parameter of the
Weibull) would not be a suitable model for the baseline range.

w a B o Y O¢

W-CARR mean | 0.0405 0.2069 | 0.7509 2.2673

stddev | 0.0334 0.0642 | 0.0865 0.2378
L-SCR mean | -0.0002 0.9782 | 0.1695

0.3546

stddev | 0.0014 0.0184 | 0.0252 0.0238
W-SCR mean | -0.0029 0.9784 | 0.0725 | 3.9483
ind. inf. | stddev | 0.0028 0.0185 | 0.0282 | 0.3637
ARMA(L,1)
W-SCR mean | -0.0026 0.9619 | 0.1033 | 3.7991
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ind. inf. AR(10) stddev | 0.0018 0.0290 |0.0308 | 0.3564 |
W-SCR mean | 0.0085 0.9311 | 0.1495 | 3.2266
ML-EIS stddev | 0.0111 0.0472 | 0.0386 | 0.2266

Table 3: Sample means and standard deviations of estimated parameters.

4.3 Analysis of residuals

For the SCR model, we can define the residual corresponding to the innovation &: as

& =R, /e (18)

where v + are the estimates of the latent variable provided either by the Kalman or the particle filter conditional
on the observation of the range at time t (the so called filtered or updated estimates). In the CARR case, the
residual is provided by the ratio R/ swhere ¥ ¢ is recursively computed by replacing the values of the estimated
parameters and of Rt and We-1 in equation 3. For each stock in the sample we computed the sample correlogram
of and checked if the strong autocorrelation present in the data was removed by the estimated dynamic part of
the models we used. Results are detailed in table 4. Though none of the models seems to completely explain away
the autocorrelation present in the data, residuals display a much limited serial dependence with respect to the
samples used for estimation. The first autocorrelation is on average positive and quite high, followed by smaller
negative values for the SCR models, while in the CARR case it drops close to zero after the first lag. At higher
lags (after 10) SCR residuals’ autocorrelations tend to drop to small values while CARR’s ones show a tendency
to increase.

4.4 Fit of moments and autocorrelations

A comparison of the ability to fit the moments and autocorrelation structure of CARR and SCR models is
presented in table 5. Moments and autocorrelations of the data were compared with implicit moments and
autocorrelations computed by evaluating for each series formulae 4 to 7 and 10 to 12 with the values of estimated
parameters. Except for the W-SCR estimated with AR(10) indirect inference, all models seem to slightly
underestimate the average of the data.

CARR L-SCR W-SCR W- W-
SCR SCR
ind.inf. ML-

ind.inf. EIS
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ARMA(1,1)
AR(10)
mean | Stdev | mean |stdev | mean |stdev | mean stdev | mean | stdev
ACF(1)’s | 0.067 |0.040 | 0.077 |0.026 | 0.096 |0.044 | 0.054 |0.036 | 0.020 |0.041
ACF(2)’s | 0.003 |0.034 | 0.000 |0.026 | 0.017 |0.028 | -0.015 |0.021 | - 0.028
0.031
ACFQ3)’s | - 0.036 | - 0.026 | - 0.027 | -0.030 | 0.022 | - 0.025
0.011 0.022 0.009 0.033
ACF®4)’s | - 0.035 | - 0.024 | - 0.025 | -0.028 | 0.021 | - 0.025
0.010 0.026 0.016 0.022
ACF(5)’s | 0.001 |0.036 | - 0.026 | - 0.024 | -0.017 |0.021 | - 0.024
0.018 0.012 0.004
ACF(6)’s | 0.001 |0.035 | - 0.023 | - 0.025 | -0.014 |0.022 | 0.000 |0.025
0.019 0.014
ACF(7)’s | 0.001 |0.033 | - 0.023 | - 0.026 | -0.012 | 0.023 | 0.001 |0.025
0.019 0.015
ACF(8)’s | 0.003 |0.033 | - 0.023 | - 0.025 | -0.009 | 0.023 | 0.005 |0.024
0.017 0.014
ACF(9)’s | 0.013 |0.033 | - 0.022 | - 0.022 | -0.001 |0.021 | 0.014 |0.023
0.009 0.008
ACF(10)’s | 0.027 |0.031 | 0.004 |0.022 | 0.006 |0.021 | 0.014 |0.021 | 0.022 |0.023
ACF(20)’s | 0.026 | 0.030 | 0.003 |0.021 | 0.007 |0.022 | 0.014 |0.022 | 0.020 |0.020
ACF(30)’s | 0.023 | 0.028 | 0.002 |0.020 | 0.004 |0.021 | 0.009 |0.021 | 0.013 |0.020
ACF(40)’s | 0.022 | 0.027 | 0.003 |0.020 | 0.005 |0.021 | 0.008 |0.022 | 0.010 |0.020
ACF(50)’s | 0.015 | 0.027 | - 0.020 | - 0.019 | 0.004 |0.020 | 0.006 |0.019
0.003 0.002

Table 4: Sample means and standard deviations of the autocorrelations of the residuals &
The mean square errors of the first moments, computed by taking the average of the squares of differences
between the empirical first moment and the implicit one computed on estimated parameters, show that the AR(10)
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W-SCR and the L-SCR seem to evaluate most precisely the mean of the process. Concerning the second moment,
once again all models seem to yield estimates that are smaller on average than the sample values computed from
the data. Here CARR and again AR(10) W-SCR seem to be the specifications with a lower quadratic loss. Coming
to autocorrelations, W-SCD seems to reconstruct the serial dependency of the data with a smaller square loss than
LSCD, which tends to overestimate the lower order autocorrelations and underestimate the higher order ones.
CARR too has a higher value of MSE at all lags, as it systematically tends to underestimate the serial dependence
in the data. It must be noted though that no model seems able to account fully for the apparent long memory in
the data and at high order of lags all autocorrelations seem to be underestimated.

4.5 Predictive accuracy

The predictive accuracy of the different models was compared by an in sample one-step-ahead analysis. First the
full sample was used to estimate the parameters of the models. Then we predicted every observation at
timet=2,...,n using estimated parameters and observations at time t-1=1,...,n-1.An out sample analysis was not
performed because splitting the sample in two parts in an already quite short set of data woud either lead to more
jittery parameter estimates or to too few forecasts. The forecasting accuracy of each estimator for each series was
measured by the mean square (prediction) error that is the average of the squared difference between predicted
and observed values. The significance of the difference between forecast errors of couples of estimators was
verified by the Diebold and Mariano (2002) test with a bilateral alternative and a quadratic loss function.
Predictions are considered different if the Bonferroni corrected p-value is below 5%. Table 6 displays the main
results for the estimation of the three models. It appears that though MSE’s are very similar, CARR tends to
predict marginally better than SCR regardless of the method of estimation. The substantial homogeneity in the
performance of L-SCR and W-SCR models does not come as a surprise, as the most relevant parameters for
forecasting are estimated consistently by Kalman filter. Concerning the slight forecasting edge of the CARR
model, this could be due to the presence of two lagged variables in the CARR expression for conditional range.
The SCR could be augmented by including the past observed range as a further determinant of the dynamics of
its latent component and it would be interesting to evaluate if its forecasting ability improves.

data CARR L-SCR W-SCR W-SCR W-SCR
ind.inf. ind.inf. ML-EIS
ARMA(1,1) | AR(10)
mean | stdev | mean | stdev | mean | stdev | mean | stdev | mean | stdev | mean | stdev
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1stmom 0.000 0..060 0.111 0.111 0.066 0.121
1.000 0.954 0.933 0.953 1.005 0.944
2ndmom 0.278 0.360 0.086 0.204 0.103 0.191
1.543 1.313 1.024 1.090 1.296 1.127
ACF(1)’s 0.102 0.156 0.091 0.087 0.064 0.059
0.601 0.502 0.697 0.595 0.621 0.531
ACF(2)’s 0.110 0.159 0.092 0.087 0.067 0.065
0.550 0.483 0.682 0.581 0.596 0.473
ACF(3)’s 0.111 0.163 0.095 0.089 0.074 0.072
0.525 0.465 0.668 0.569 0.573 0.462
ACF(4)’s 0.110 0.167 0.099 0.092 0.080 0.087
0.513 0.447 0.654 0.556 0.551 0.472
ACE(5)’s 0.111 0.171 0.102 0.093 0.086 0.098
0.503 0.431 0.640 0.544 0.530 0.484
ACE(6)’s 0.111 0.175 0.104 0.095 0.090 0.107
0.494 0.416 0.627 0.533 0.511 0.493
ACE(7)’s 0.113 0.179 0.107 0.097 0.094 0.114
0.482 0.402 0.615 0.522 0.492 0.496
ACE(8)’s 0.112 0.182 0.109 0.098 0.098 0.120
0.475 0.389 0.602 0.511 0.474 0.506
ACF(9)’s 0.113 0.185 0.111 0.099 0.101 0.124
0.476 0.376 0.590 0.500 0.457 0.530
ACF(10)’s 0.110 0.188 0.113 0.101 0.104 0.127
0.468 0.364 0.578 0.490 0.441 0.536
ACF(20)’s 0.107 0.207 0.128 0.108 0.116 0.128
0.414 0.271 0.476 0.400 0.314 0.491
ACF(30)’s 0.105 0.215 0.134 0.110 0.111 0.122
0.380 0.212 0.394 0.330 0.229 0.416
ACF(40)’s 0.108 0.218 0.134 0.108 0.101 0.129
0.345 0.172 0.329 0.273 0.171 0.357
ACF(50)’s 0.104 0.218 0.131 0.103 0.090 0.117
0.307 0.143 0.276 0.228 0.130 0.243
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MSE MSE MSE MSE MSE

1 0.006 0.002 0.007 0.000 0.009
SstmMo

m
2ndmom 0.159 0.395 0.315 0.116 0.301
ACF(1)’s 0.031 0.013 0.005 0.005 0.010
ACF(2)’s 0.026 0.021 0.006 0.007 0.010
ACFQ@3)’s 0.025 0.024 0.007 0.007 0.007
ACF(4)’s 0.026 0.023 0.007 0.006 0.004
ACF(5)’s 0.028 0.023 0.007 0.005 0.003
ACF(6)’s 0.029 0.021 0.006 0.005 0.003
ACF(7)’s 0.029 0.021 0.006 0.005 0.003
ACF(8)’s 0.032 0.020 0.006 0.005 0.004
ACF(©9)’s 0.036 0.017 0.005 0.006 0.006
ACF(10)’s 0.037 0.016 0.005 0.006 0.008
ACF(20)’s 0.052 0.008 0.004 0.017 0.013
ACF(30)’s 0.065 0.005 0.007 0.030 0.017
ACF(40)’s 0.068 0.004 0.009 0.038 0.019
ACF(50)’s 0.068 0.005 0.010 0.038 0.021

Table 5: Upper table: sample means and standard deviations of sample moments and autocorrelations of the 478
S&P 500 stocks with more than 1000 observations and theoretical moments and autocorrelations computed from
estimated parameters. Lower table: averages of the squared differences between implicit theoretical moments and
sample moments computed for each stock.

When the significance of pairs of forecasts is tested, it turns out that only about in one stock in fifteen the
CARR and the W-SCR model forecast in a significantly different way. The proportion reduces of a half when the
LSCR is concerned. If finally we restrict our sample to significantly different forecasts only, we see that the gain

of

CARR in terms of MSE is slightly reduced in the case of the W-SCR while it remains substantially the same for
the LSCR. We conclude by remarking that statistics on the comparisons between W-SCR and L-SCR, that are
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not reported in table 6, display a substantial similarity between the forecasts of the two models (for example, only
less than the 1% of the forecasts can be considered different after testing).

mean | sd min | max |
MSE W-CARR 0.2738| 0.1288 0.1564 1.3703
MSE L-SCR 0.2759 0.1136| 0.1632 1.0583
MSE W-SCR ind.inf. AR(10) | 0.2758| 0.1155 0.1597| 1.0745
MSE W-SCR ind.inf| 0.2763| 0.1189 0.1601 1.1181
ARMA(1,1)
MSE W-SCR ML-EIS 0.2756| 0.1171] 0.1613 1.0690
significantly=
L-SCR and W-CARR 3.8%
significantly=
W-SCR AR(10) and W-CARR 7.9%
significantly
W-SCR ARMA(1,1) and W- 7.9%
CARR
significantly=
W-SCR ML-EIS and W-CARR 7.8%
Table 6: MSE comparison and Diebold and Mariano (2002) results for in sample one-step-ahead forecasts.

5 Conclusion

The SCR is a simple model for the dynamics of financial range. Its estimation is feasible and can be achieved
with several techniques, a few of them have been proposed here. In an empirical analysis on a large subset of the
stocks composing S&P 500, SCR seemed to improve on the CARR model in reconstructing the autocorrelation
structure of the data and was only slightly less efficient in forecasting. Extensions of the models are possible and
could be explored in future research. Concerning the latent variable, a long memory version, a version with a
more complex process than an AR(1) and a departure from normality of the innovation in the latent variable
process could be of interest. Concerning the baseline range distribution, a mixture distribution could be useful in
accounting for the consequences of heterogeneity in the information in the market.
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