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Abstract 
The rapid development and progress of urbanization has also driven the further development of transportation and construction 
industry on a certain level. If we really want to ensure the overall and effective improvement of the longitudinal pier height 
difference for the corresponding seismic performance of the bridge itself, we should also continuously strengthen the detailed 
grasp of the height difference in the construction process, so as to reduce the appearance of some obvious constraints. It is also 
under such basic conditions that this paper carries out a more in-depth study and discussion from three perspectives: a brief 
overview of height difference, precautions for bridge seismic response work, and research on the influence of longitudinal pier 
height difference on bridge seismic response, which also ensures the daily travel safety of the people to a great extent.  
Keywords: longitudinal pier height difference; Bridges; Seismic response; influence 
 

 

Abstract  

Sensitive medical data can be exchanged and collected via connected devices because to the rapidly expanding 

Internet of Medical Things (IoMT). Protecting patient privacy and the dependability of medical applications 

requires ensuring the security and integrity of this data. This study examines and contrasts two cryptographic 

strategies for IoMT system physical layer security. The first method combines the HMAC-SHA-256 hashing 

technique to assure data integrity with the AES-256 encryption algorithm to maintain data confidentiality. The 

second strategy makes use of the AESGCM (Galois/Counter Mode) technique, which offers assurance of integrity 

and confidentiality in a single, integrated process. The study assessed and contrasted the performance 

characteristics of the two techniques with respect to the duration required for the encryption and decryption of 

identical data samples. The outcomes show that, in terms of encryption and decryption times, the AES-GCM 

technique performs better than the AES-256 + HMAC-SHA-256 strategy. The research's conclusions offer 

insightful information to IoMT system designers and developers, empowering them to choose the best 

cryptographic methods for protecting the integrity and confidentiality of private medical data in IoMT 

applications' physical layer.  
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1.   INTRODUCTION  

Cryptography is the study and use of techniques to shield information and communications from adversaries [1]. 

The science of information and communication security is known as cryptography. By prohibiting illegal 

alteration, it provides protection against unauthorized parties [2]. Hashing functions allow data to be converted 

into unique fixed-length strings (hash values), which allow recipients to compare hashes and verify the content's 

integrity [3]. Two of the most common forms of cryptography are symmetric encryption, which uses one key for 

both encryption and decryption, and asymmetric encryption, which uses two keys—a public key for encryption 

and a private key for decryption—for both operations [3]. On a variety of digital platforms, the Advanced 

Encryption Standard (AES) ensures secure communication and data security. [4]AES-256 employs a 256-bit key 

in its symmetric-key encryption technique. By utilizing the AES cipher to encrypt data, it offers confidentiality. 

AES-256 is an encryption method that has gained widespread use and confidence due to its high level of security. 

[5] There are three variants of the popular block cipher AES (Advanced Encryption Standard): AES-128, AES-

192, and AES-256. The versions vary in the number of rounds and key size. Parallel architectures are essential 

for good performance with AES algorithms because they require substantial computational power for information 

security [6].  

The trustworthy Message Authentication Code (HMAC), which is hash-based, can be used to verify the integrity 

and authenticity of data transfer. [7] A hash function's job is to create a message or set of data's "fingerprint" for 

authentication. The length of the hash code that the algorithm generates determines how resilient it is to brute-

force attacks. Software can execute Message Authentication  

Codes (MAC) more quickly when they are constructed from Cryptographic hash functions (SHA256) rather than 

symmetric block ciphers like Data Encryption. [8] Unlike encryption/decryption algorithms, the widely used 

Message Authentication Code (MAC) algorithm is not reversible for message authentication. HMAC creates a 

unique fixed-size hash value known as a tag by combining the message that has to be verified with a secret key 

using cryptographic hash methods like Secure hash algorithm (SHA-256). HMAC safeguards the data integrity 

by generating a tag that is dependent on both the message content and the secret key [9]. This tag is sent with the 

message so that the recipient can use the shared secret key and the message they received to recalculate the HMAC 

and verify its authenticity [10]. While HMAC is a subset of MAC that verifies the authenticity of a message using 

a private key and a cryptographic hash function, MAC is used to confirm the authenticity of messages. SHA-256 
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and other hashing algorithms can be inserted into the HMAC algorithm's framework; the term "SHA256+" refers 

to the combined use of these methods [11].  [12] Data encryption and authentication on the physical layer of the 

Internet of Things using AESGCM (Advanced Encryption Standard - Galois/Counter Mode) can be done. An 

effective encryption technique for Internet of Things applications is AES-GCM. [13] To provide data secrecy 

while being sent over the IoT physical layer, AES-GCM employs the AES block cipher. AES-GCM offers robust 

encryption capabilities and supports key sizes of 128 bits, 192 bits, and 256 bits. The Galois/Counter Mode 

(GCM) tag, which is produced by AES-GCM, is a Message Authentication Code (MAC) that is used to confirm 

the validity and integrity of encrypted data [14]. The recipient can confirm the data's integrity by recalculating 

the GCM tag and comparing it with the received tag after receiving the encrypted data and GCM tag [15]. The 

recipient can be sure that the data hasn't been altered after transmission if the tags match [16]. One can adjust the 

GCM tag length (usually 16 bytes) to offer strong protection against attempts at forging. The encrypted data, the 

IV, and any additional authenticated data (AAD) are used to calculate this GCM tag. [17] Additional 

Authenticated Data (AAD), which can be used to secure headers or metadata in addition to the encrypted payload, 

can be included with AES-GCM. This is especially helpful in Internet of Things instances where you might need 

to safeguard both the sensitive payload and some non-sensitive data. Every encryption operation performed by 

AES-GCM generates a distinct Initialization Vector (IV), preventing replay attacks, in which a malicious party 

tries to reuse previously transmitted data [17]. To guarantee that the IV is distinct for each message, it is usually 

generated from a counter value or a nonce, which is an integer that is used just once. Because of its speed and 

efficiency, AES-GCM is well suited for Internet of Things applications that demand high-performance 

cryptographic processes [18]. The algorithm can benefit from parallelization for increased throughput and can be 

implemented in either software or hardware.  

Researchers can secure the communication channel at the bottom of the IoT stack by employing AES-GCM at 

the IoMT physical layer to preserve the confidentiality and integrity of your IoMT data. [19] In addition to 

ensuring confidentiality through encryption, IoT device manufacturers and system designers can guarantee the 

integrity of the data being transmitted over the physical layer by utilizing AES-GCM. All things considered, AES-

GCM, with its distinct IV and GCM tag mechanism, strengthens the overall security of the IoT infrastructure by 

offering a strong protection against replay assaults in IoT systems.  

AES-256 offers confidentiality, HMAC-SHA-256 offers data integrity and authenticity, and AESGCM offers 

both [19]. These are the main distinctions between AES-256, HMAC-SHA-256, and AES-GCM. AES-GCM is 

an encryption method that combines GHASH authentication and AES encryption, while HMAC-SHA-256 is a 

message authentication code. AES-256 is a symmetric-key encryption algorithm. AES-GCM is frequently used 

in secure communication protocols and applications that require both encryption and authentication, while AES-

256 is frequently used for encryption and HMAC-SHA-256 is frequently used for data signing and verification 
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[20]. In general, AES-GCM outperforms AES-256 and HMAC-SHA-256 combined in terms of speed and 

efficiency. High security is offered by AES-GCM and the AES-256 + HMAC-SHA-256 method.  

A wearable manometer designed exclusively for blood pressure measurement is a device that combines Internet 

of Things (IoT) capabilities with manometer capability to provide continuous, linked blood pressure monitoring 

[21]. Many medical conditions that are sometimes hard to diagnose or have symptoms that are not immediately 

apparent can be predicted with the use of a heart rate monitoring gear. Security and privacy are the main 

drawbacks of IoMT healthcare [22]. Attacks on internet-enabled and connected medical devices have the potential 

to seriously impair patients' physical and mental health, possibly even resulting in death. Man-in-the-middle 

(MitM) attacks, wormhole attacks, sinkhole attacks, distributed denial of service (DDoS) attacks, eavesdropping, 

ransomware, and many more are examples of common IoT attacks [23]. Attacks similar to denial-ofservice attacks 

can be launched by exploiting security flaws in Internet of Things devices or by getting into a large number of 

devices to establish a botnet. Data stored on Internet of Things devices can be encrypted by ransomware, 

preventing authorized users from accessing it [24]. [25] In 2019, the medical industry reported 41.4 million patient 

data breaches, or approximately 49% more attacks than in 2018. 32% of all reported data breaches between 2015 

and 2022 occurred in the healthcare industry. 707 healthcare data breaches occurred in 2022 [26].   

A few of the IoMT systems now in use have poor encryption and no physical layer data integrity. Based on the 

aforementioned problems, the study's goals are to apply HMAC hashing to confirm the data's integrity at the 

physical layer, adding another degree of security and privacy, and to deploy AES-256 encryption to guarantee the 

confidentiality of data transferred through Internet of Things smart healthcare devices. The AES-GCM technique 

was also used in the research to guarantee data integrity and security at the physical layer of the Internet of Medical 

Things. The amount of time needed to encrypt and decrypt the same data was also compared for both algorithms 

in this paper. Python was used as the programming language to create the system. The goal of this research is to 

create a safe flow of data from the physical layer to the application layer in wearable fitness trackers, smart 

watches, temperature sensor devices, wearable manometers, and smart clothing that monitors blood pressure for 

hypertension.   

2.   RELATED WORK  

[5] In order to increase computational capacity for high-security cryptography, the investigator's primary 

objective is to implement the AES cryptographic algorithm using parallel computing architectures, notably field-

programmable gate arrays (FPGAs). For high-security cryptography applications, parallelized architecture on 

FPGA platforms enables the AES algorithm's implementation, providing more processing capacity. [7] The author 

wants to use Verilog to develop Advanced Encryption Standard (AES) encryption. Cryptographic methods are 

used to safeguard data, such as that found in electronics. [8] The researchers employed Secured Hash Algorithm 

256 and Keyed-Hash Message Authentication Code (HMAC-SHA256) to provide a safe information-sharing 
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environment. Additionally, a trust-based mechanism was added that can distinguish between trusted and 

malicious nodes in the network. [27] A high-throughput, compact SHA-256 hash function FPGA design was 

reported in this study, along with the matching HMAC FPGA design. [9] This author examines a quick 

implementation of the Hash-based Message Authentication Code (HMAC), which makes use of the SHA-256 

algorithm to maximize hardware efficiency and design efficacy by ensuring the validity and integrity of data.   

[11] A high-performance HMAC processor built on the SHA-2 family of hash algorithms was presented by the 

authors. Specifically, four HMAC hardware modules—SHA224, SHA-256, SHA384, and SHA-512—are 

implemented. [28] The primary objective of the suggested approach is to minimize superfluous block operations 

and enhance the internal workings of the underlying pseudo random function (PRF). Stated differently, the author 

has combined multiple superfluous processes and fully utilizes the constant values present in PBKDF2. [29] The 

purpose of this master's thesis is to evaluate the Solo key's security against various side channel attacks. Solo is 

an open source security token. To provide a strong second factor authentication, the Fido Alliance's U2F 

authentication protocol is used by the Solo key. This study, which is based on the concept of session protection 

as put forth by [30], stores the shared keys required for HMAC-SHA256 encryption by utilizing the session 

Storage feature of HTML5. [12] This paper describes a constant-time version of AES that requires just 7.59 

cycles/byte on an Intel Core 2 Q9550. The costs associated with this implementation include the expenses 

associated with converting the input data into bitsliced format and the output data back to normal format. [15]The 

AES-GCM authenticated encryption (AE) cryptocore design described in this study is appropriate for Internet of 

Things security applications. The AES-GCM core provides integrity and authenticity using GHASH and 

confidentiality through the Counter (CTR) mode of the AES block cipher. [17] The authors utilized this (already-

fixed) problem as a concrete illustration of how AES-GCM's authentication technique (GHASH) is vulnerable. 

[31] Several high throughput network protocols have been allowed to use the Advanced Encryption Standard 

(AES) in conjunction with the Galois Counter Mode (GCM) of operation to offer authenticated encryption. [32] 

The authors of this paper discussed the effective FPGA architecture of the GCM in conjunction with the AES 

block cipher. [33] This article presents an efficient Galois Counter Mode of operation (GCM) implementation 

using the Advanced Encryption Standard (AES) on low-end microcontrollers. [34]Two effective hardware 

implementations of the AE schemes, AESGCM and AEGIS, are also shown in this article. Because of the innate 

computation feedback in AESGCM, system efficiency is always dictated by the Galois Hash (GHASH) 

architecture. [35] The writer's assessments on Deoxys, a third-round contender in the current Competition for 

Authenticated Encryption: Security, Applicability, and Robustness (CAESAR), are included in this article.  

3.   METHODOLOGY  

Description of the Proposed System:  
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Advanced Encryption Standard (AES)-enabled wearable health data monitoring devices ensure the integrity and 

confidentiality of sensitive data. AES encryption enables safe communication between the blood pressure monitor 

and other connected devices, such as smartphones or cloud servers, where health data is processed or stored. 

Message Authentication Codes (MACs) are used to ensure data integrity and authenticity instead of encrypting 

data. The methods listed below can be used to implement MAC and AES encryption in wearable technology in 

order to monitor related health data:  1. Determine Which Data to Encrypt: Determine which health data 

collected by wearable technology needs to be encrypted. "TCD_data" is the name of the dataset that the system 

utilizes. The Transcranial Doppler (TCD) Data non-invasive ultrasound technique is used to measure the major 

arteries in the brain's blood flow velocity. A "TCD_data" dataset may contain measurements made during TCD 

exams, such as pulsatility indices, blood flow velocities, and other hemodynamic parameters. Table 1 shows the 

dataset TCD_data, and Table 2 shows an example of SUBJ003, which is a dataset TCD_data. These datasets on 

blood pressure were gathered from physionet.org.   

2. Select the AES Configuration: For this investigation, the AES-256 has been used. With a 256bit key 

length, this arrangement provides the highest level of safety among all AES versions. AES256 offers a stronger 

resistance against brute-force attacks.    

3. Produce Keys for Encryption: Generate strong encryption keys to use with AES-256. These keys ought 

to be securely stored by the wearable device and rendered unreadable by everyone but approved users or apps. 

The AES-256 operating mechanism is based on CBC (Cipher Block Chaining).   

4. Encrypt Health Data: Encrypt the wearable device's collected private health data using AES-256 

encryption and the created encryption keys. Encrypt data before transferring it across wired or wireless 

communication routes.   

5. MAC Computation: A secure MAC technique, such as HMACSHA256, is employed in addition to 

encryption to create a MAC over the encrypted data. The MAC ensures the integrity and validity of the encrypted 

data. The wearable device determines the MAC using a secret key that is unique to it and the server. The 

PyCryptodome framework was used in this investigation. Many cryptographic techniques, including hash 

functions, digital signatures, symmetric and asymmetric encryption, and HMAC, are available through this 

Python wrapper for the Crypto++ package. Use the HMACSHA256 method to find the message's HMAC value. 

Provide the secret key and the message to the HMAC algorithm as inputs.   

6. Secure Data Transmission: Verify that the wearable technology securely sends encrypted health data to 

other platforms, cloud servers, or mobile devices.   

7. Install Data Decryption: To unlock the protected health data, install a decryption capability in the 

recipient systems or applications using the appropriate AES-256 keys. After acquiring the data, the central server 
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recomputes the MAC using the same secret key and the encrypted data it received. If both the computed and 

acquired MACs match, it indicates that the data was not changed during communication.   

8. Manage Key Management: Use suitable key management protocols to stop unauthorized access to or 

exposure of AES-256 encryption keys. Establish procedures for key production, distribution, rotation, and 

revocation in order to safeguard encrypted data.   

9. Test and Validate Security: Carefully test and validate the AES encryption deployment to ensure its 

effectiveness and security.  

Table 1: TCD_data Dataset  

Participant  Sex  Dominant 

Hand  

Body  

Mass  

Index  

Systolic  

Blood  

Pressure  

Diastolic  

Blood  

Pressure  

Education  0back(1) 

Left  

Blood  

Flow  

Velocity  

1-back  

Left  

Blood  

Flow  

Velocity  

SUBJ001  M  R  28.4  125  85  MD, PhD  54.2806  53.4231  

SUBJ002  M  R  26.95  115  70  PhD  23.74456  22.19077  

SUBJ003  M  R  25.98  114  70  MD  44.98957  45.51511  

SUBJ004  F  R  20.51  98  60  MD  45.51381  44.84977  

SUBJ005  M  R  26.93  132  80  MD  28.75367  29.50703  

  

  

  

  

  

  

Table 2: SUBJ003 Dataset        

Sample Rate: 400     

Relative Time  Date  Time Stamp UTC  Left MCA  Right MCA  

0  9/13/2018  1:59:40 PM  0.600586  0.611267  

0.01  9/13/2018  1:59:40 PM  0.593872  0.611267  

0.02  9/13/2018  1:59:40 PM  0.583801  0.610352  

0.03  9/13/2018  1:59:40 PM  0.574951  0.610046  
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0.04  9/13/2018  1:59:40 PM  0.570984  0.610046  

0.05  9/13/2018  1:59:40 PM  0.57251  0.610657  

Algorithm  

The steps of the AES-256 algorithm are as follows:  

AES-256 Encryption:  

1. Take the 128-bit plaintext block and the 256-bit secret key.  

2. Run through the plaintext through a first key-dependent permutation.  

3. Carry out the ensuing 14 rounds:  

a. Use S-boxes to carry out a replacement layer.   

b. Use a linear transformation to carry out a linear mixing layer.  

c. Include the round key that the secret key yielded.  

4. Complete one last permutation that depends on a key.  

5. The output is the generated 128-bit ciphertext.  

  

The following is the expression for the HMAC-SHA256 formula:  

𝐻𝑀𝐴𝐶SHA-256(𝐾,)=SHA-256((𝐾⊕opad)∥SHA-256((𝐾⊕ipad)∥𝑀))HMACSHA-256 

(K,M)=SHA-256((K⊕opad)∥SHA-256((K⊕ipad)∥M)) Where:  

• K (padded to a block size if necessary) represents the secret key.  

• 𝑀 is the message that has to be confirmed.  

• The symbol ⊕ indicates bitwise XOR.  

• The key provides the padding constants padopad and ipadipad.  

• ∥ indicates concatenation.  

• SHA-256 ( SHA-256() is the representation of the SHA-256 hash function.  

• The building of the HMAC consists of two steps:  

There are two steps in the construction of the HMAC:  

The building of the HMAC consists of two steps:  

1. Key Padding: If a key is larger than the block size (64 bytes for SHA-256), it can be hashed using the 

hash function to create a fixed-size key. If the key is shorter than the block size, it is padded with zeros to the 

block size.  

2. Inner and Outer Padding: The key is XORed with the inner and outer padding constants, ipadipad and 

opadopad. Subsequently, the message is hashed twice: once with the concatenation of the message and the inner 

padded key, and once with the outer padded key and the result of the first hash.  
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The HMAC-SHA256 authentication code, which can be used to verify the message's validity and integrity, is the 

result of applying a single secret key to a hash. It is important to keep in mind that HMAC-SHA256's security 

features and, when used effectively, resilience to known threats make it a popular choice for message 

authentication in a wide range of cryptographic protocols and applications.  

  

The procedures for encrypting and decrypting a CSV file using the AES-GCM (Advanced Encryption Standard 

with Galois/Counter Mode) algorithm. The techniques employed and the algorithm are broken out as follows:  

Methods Used:  

1. The function encrypt_data(data, key, aad) is in charge of utilizing AES-GCM to encrypt the input data. 

The following specifications are required. The additional authenticated data (AAD), which is also a 256-bit key, 

the 256-bit encryption key, and the data to be encrypted—which in this case is a string. Using the AESGCM class 

from the cryptography package, the method creates a random 12-byte nonce, encrypts the data, and then returns 

both the encrypted data and the nonce.  

2. The function decrypt_data(nonce, encrypted_data, key, aad) is in charge of utilizing AES-GCM to decrypt 

the encrypted data. The following specifications are required. The additional authenticated data (AAD), which is 

likewise a 256-bit key, the encrypted data, the nonce used during the encryption procedure, and the 256-bit 

encryption key. The function decrypts the data using the AESGCM class and outputs the resultant string.  

The algorithm  

1. To begin the encryption or decryption process, the user is required to provide the path to the CSV file.  

2. After reading the CSV file, the information is saved as a list of rows.  

3. The first 5 rows of the original data are printed to the console.  

4. The secrets.token_bytes() function is used to generate a random 256-bit AAD key and a random 256-bit 

encryption key.  

5. The encryption procedure has a time limit, and for every data row:  

• The encryption process is timed, and for each row in the data:  

• The row is converted to a comma-separated string.  

• The encrypt_data() function is called with the row data, the encryption key, and the AAD key as 

arguments.  

• The returned nonce and encrypted data are stored in a list.  

6. Each nonce and encrypted data combination in the encrypted data list has a timed decryption process.  

• The nonce, encrypted data, encryption key, and AAD key are passed as parameters to the   

 decrypt_data() method.  

• After decrypting, the row is divided into separate columns and kept in a list.  
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7. The console is printed with the first five rows of both the encrypted and decrypted data.  

4.   RESULTS  

Figure 1 displays both the original and encrypted data after hashing and encrypting it using the AES 256 and 

HMAC algorithms. The original data and the encrypted data are displayed in Figure 2, which displays the 

outcomes of hashing and encryption using the AES-GCM technique. A graphical depiction of the amount of time 

required to encrypt and decrypt data using both techniques is shown in Figure 3. Table 3 displays the encrypted 

output using the AES 256 and HMAC approaches. The encrypted file, file size in megabytes (MB), encryption 

key, and HMAC key are all listed in this table.  

The encrypted output using the AES-GCM method is shown in Table 4. The encrypted file, file size in megabytes 

(MB), encryption key, and AAD key are all listed in this table. Table 5 displays the amount of time required to 

encrypt and decrypt data using AES-256/HMAC techniques. Time to encrypt CSV data with AES-256/HMAC is 

shown in this table as TEDAH, and Time to decrypt CSV data encrypted using AES-256/HMAC is shown as 

TDEDAH. Table 6 shows the Time Consumption Demonstration for Encrypting and Decrypting Data Using AES-

GCM Method. The Time to Encrypt CSV Data with AES-GCM is shown in this table as TEDAG, while the Time 

to Decrypt CSV Data with AES-GCM is shown as TDED.  

  

  

   



 ISSN: 3064-8270    

 

Research Article 

 

  
 

  | ISSN: 3064-8270  Page | 34 

 

 

 
 

 Published by Keith Publication 

Artificial Intelligence, Machine Learning, and Data 

Science Journal 

Behavior 

 

https://keithpub.com/ | ©2023 AIMLDSJ| 

Vol: 11 N0: 03 

Figure 1: Results of Encryption and Hashing using the AES 256 and HMAC Techniques   

   
Figure 2: Results of Encryption and Hashing using the AES-GCM Method  

   

  

  

  

  

  

  

  

Table 3: Encrypted result using AES 256 and HMAC techniques      

N/S  Encrypted file  File Size MB  Encryption Key  HMAC Key  

1  SUBJ001_encry 

pted.csv  

4.89  b'w\xb6"\xc7\xe5@\x05\xc4\ 

xb4!\x89\xab\x05\xde\x9c"\'\x 

f8\xfe\xd9\xd3w\xc0\xd6\x03\ 

xbd/\xea,\x9d\x13,'  

177d39f67cac68281708d 

0144558a4d3401296a58 

8f0d1e7131b119f637c60 

4c  
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2  SUBJ002_encry 

pted.csv  

3.36  b'\xeb\xda\xd5\xd4\xdew\xf4 

x\xe6\x7f\xa5B\xf1\xd7\xa6\x 

e9@\xc4>\xea_%\x86\xeb\xaf 

\x00\xe1\xc6\xcb\xd5D\x82'  

57f2126c3d98d4cfd7277 

de45c8a245d74ec9c2cae 

5546458de1605edb75d3 

6e  

3  SUBJ003_encry 

pted.csv  

  

3.31  b'&s\x1f\x9a\xda]\\\x19)\x15\ 

x14\xb5\xbe(\xc9\xc5\x1c\xeb 

r#\xd9r\x12\x9a\xd0\xec\xc4v 

a\x96e_'  

  

1c902aa02a1a8e5ab0058 

8c2ea1e52766e5f5a64dc 

11390523af8d3fc44c9a4 

4  

4  SUBJ004_encry 

pted.csv  

  

3.70  b'b{\xc0\xab\x86\xb5\x80|\xb 

6\xd7\xd8\x82\xe7o&c\xdawk 

\x8e\xbe\x9b\xf6W(U\x81\x1 

7\xf0s\x8a\x1e'  

31f0e6928602bf12580c6 

1a4634843b341e97fdffd 

5f738553ce2461a79cc26 

1  

       

5  SUBJ005_encry 

pted.csv  

  

3.37  b'\xbb\x99i\xd9\xfc\xce`\x8a\ 

xc3\x00r\x1d&<x\x9c\xad\xd 

4_\x90{\x80\xc8\xc5\x10\x12 

\xdf>\x17\xa5\x8b\xcd'  

  

63d532e9658d48913a12f 

3b33a01430a2dc0978ef4 

f26af8b4edef13ff73d169  

  

Table 4: Encrypted result using AES-GCM Method  

N/S  Encrypted file  File Size MB  Encryption Key  AAD Key  

1  SUBJ001_encry 

pted.csv  

4.89  b51dcb733f09746429b90e293 

6975f8c22165994b041b6189 

5424ef3537596da  

ed881e933734a1e10d905 

e2aab2da2095ed9963aaa 

b29f507920e11ed974548 

a  

2  SUBJ002_encry 

pted.csv  

3.36  13c6c5f41b13272468f06fe97 

22f1aea7541d6fda64326db3c 

8f0a677750f3ba  

db07c473bd9cc95262874 

bfbe220af004e495fe6b56 

aa24f6190dd3a7f69f4a6  

3  SUBJ003_encry 

pted.csv  

  

3.31  e4584291284b6119b5306df0 

3d7faf2ae89d3c212da367d66f 

1d5231c9489eb8  

20f3fe05230fa98d8117e7 

43d9a7571e8d48c80e627 

254cf545b2b1906568d6d  
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4  SUBJ004_encry 

pted.csv  

  

3.70  a6045904db5e1462585cf75df 

151e830a3c9f5022a570c1efb 

46755d72d5441d  

b22eddcddc6dbd86fb9ff1 

33f24b37b89089c3be7ae 

a9a91915c5bec45e1c990  

5  SUBJ005_encry 

pted.csv  

  

3.37  2d9fdca68c0e4f3a7b74e8410 

5cefd3c0e6fdbc306b3226119 

e183ae8d063630  

6ce849b1524a3cbd715ae 

eb2a347d4f2ee67112c97 

80ec20ec459b343bf0dc7 

2  

Table 5: Proves Time Consumption to Encrypt and Decrypt Data using AES-256/HMAC Techniques     

N/S  File Size MB  TEDAH  TDEDAH  

1  4.89  48.9  31.5  

2  3.36  20.7  21.9  

3  3.31  19.4  20.7  

4  3.70  24.9  23.2  

5  3.37  21.8  22.4  

Table 6: Demonstrates Time Consumption to Encrypt and Decrypt Data using AES-GCM Method  

N/S  File Size MB  TEDAG  TDED  

1  4.89  5.660716533660889  5.709982872009277  

2  3.36  5.620843410491943  5.454753160476685  

3  3.31  5.571392297744751  6.3335487842559814  

4  3.70  6.45686674118042  6.066409349441528  

5  3.37  4.940171957015991  5.15477991104126  
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Figure 4: Graphical Representation of Time consumption to Encrypt and Decrypt data using both methods  

Tables 3 and 4 present the encrypted result display for both strategies. Encrypted file, file size in megabytes, 

encryption key, HMAC key, and AAD key are all listed in this table. A graphical depiction of the amount of time 

required to both encrypt and decrypt data is shown in Fig. 3. These findings demonstrate that the 4.89 MB 

SUBJ001 file was encrypted and decrypted in 48.9 and 31.5 seconds, respectively, using AES-256/HMAC 

techniques. The findings also confirm that the 4.89  

MB SUBJ001 file was encrypted and decrypted in 5.660716533660889 seconds and 5.709982872009277 

seconds, respectively, using the AES-GCM Method. This demonstrates that the AES-GCM Method can ensure 

data integrity and encrypt and decode data more quickly than the AES-256/HMAC Techniques.    

  

5.   CONCLUSION   

This study applies the HMAC hashing approach to assure data integrity at the physical layer of IoMT and 

integrates the AES-256 encryption technique to secure data secrecy there as well. The AESGCM technique was 

also used in the research to guarantee data integrity and security at the physical layer of the Internet of Medical 

Things. The amount of time needed to encrypt and decrypt the same data was also compared for both algorithms 

in this paper. On a variety of digital platforms, the Advanced Encryption Standard (AES) ensures secure 

communication and data security. The trustworthy Message Authentication Code (HMAC), which is hash-based, 

can be used to verify the integrity and authenticity of data transfer. The AES cipher operates in the Galois/Counter 

Mode, or AES-GCM, which offers both authenticity and confidentiality. To offer authenticated encryption, it 
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combines the GHASH function with AES encryption in counter mode (AES-CTR). Python was used as the 

programming language to create the system. These findings demonstrate that the 3.36 MB SUBJ002 file was 

encrypted and decrypted in 20.7 and 21.9 seconds, respectively, using AES256/HMAC techniques. The findings 

also confirm that the 3.36 MB SUBJ002 file was encrypted and decrypted in 5.454753160476685 seconds and 

5.620843410491943 seconds, respectively, using the AES-GCM Method. Better hardware support, performance 

and throughput, power and energy consumption, security needs, ease of implementation, and compatibility are all 

benefits that AESGCM may offer. This is especially important for Internet of medical devices. The results of this 

study will improve safe IoT smart healthcare systems and offer insightful information to practitioners and 

researchers alike.   
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